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Abstract

We develop aBayesian probaility network model to characterize eutrophication in the
Neuse River Estuary, North Carolina, and support the estimation of a TMDL for nitrogen.
Unlike conventiond smulation models, Bayesian network models describe probebilistic
dependencies among system variables rather than substance mass baances. Full networks
are decomposable into smaler submodels, with Structure and quantification thet reflect
relevant theory, judgment, and/or observation. Modd predictions are expressed
probabiliticaly, which supports consideration of frequency-based water qudity standards
and explicit estimation of the TMDL margin of safety. For the Neuse Estuary TMDL
goplication, the Bayesian network can be used to predict compliance with the dissolved
oxygen and chlorophyll a regulatory criteria as afunction of riverine nitrogen load. In
addition, themode indudes ecologica endpoints, such asfish kills and shellfish survivd,

that are typicaly more meaningful to stakeholders than conventiond water qudity
characteridtics. Incorporating these unregulated attributes into TMDL decisonswill reguire
explicit condderation of cods, benefits, and rdative likdihoods of various possible outcomes

under dternate loading scenarios.

Keywords. Neuse Estuary Bayesian Ecologica Response Network (Neu-BERN), risk

andyds water qudity modding, Totd Maxdmum Daily Load (TMDL), decisor-meaking
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Introduction

The Neuse River estuary, North Carolina (Figure 1), has been experiencing severe
consequences of eutrophication in recent yearsincluding excessve dgd blooms, low levels
of dissolved oxygen, dedining shellfish populations, large fish kills, and outbregks of toxic
microorganiams. These problems have led to the Neuse River being declared one of the
twenty most threatened riversin the United States (ARF 1997). The Neuse River estuary has
aso been included on the federd list of impaired waters under section 303(d) of the Clean
Water Act. Asin many other marine systems, nitrogen has been identified as the pollutant of
concern in the estuary because it is believed to stimulate the excessive dgd growth that is a
the root of other ecologica problems. Therefore, the USEPA has required thet a Totd
Maximum Dally Load (TMDL) for nitrogen be developed by the State of North Cardlina
TMDLs establish the maximum pollutant loading to awater body thet will dlow it to meet
water quaity standards and attain its designated uses(Office of Water 1999). These
assessments then provide the basis for states to require watershed-based pollutant controlsto
achievethe TMDL. Theimpaired condition of waters across the nation underlies the
requirement that thousands of TMDLsfor pollutants must be developed in the next ten years
(NRC 2001).

Todevdop aTMDL, alinkage must be defined between the pollutant load and the
symptoms of water qudity impairment. In many cases, water quaity modes provide the
stientific bagis for this pollutant-effect relationship and therefore play acriticd rolein
pollutant load decisons. Mogt receiving water models used for TMDL development are of
the determinigtic, mechanidtic variety (Lung 2001; Office of Water 19974). That is, they
reflect the belief that the values of water quaity endpoints are determined by afinite st of

processes that can be represented by mathematica expressions. Once cdlibrated to asystem



Borsuk et al. — Page 4

of interest, these models are assumed to adequately represent redlity, and various pollutant
reduction strategies are Smulaed with the mode to anticipate water quality effects.

Smulaion modeks of increasing mechanistic complexity have been developed and
applied in recent years(Thomann 1998), yet there islittle evidence that much confidence can
be atached to the predictions of such models(NRC 2001). While cdibration sudies may
sometimes show a dose fit between predictions and the cbservaions to which modds are
cdibrated, verification sudies againg different sets of data suggest thet prediction errors may
be large, particularly for modes of higher resolution and grester mechanigtic detail (Reckhow
1994). Thisresult should not be surprising considering the complexity of naturd systems
relaive to even the mogt sophiticated smulation models. 1t is not reasonable to expect thet
al of the mechaniams of naturd systems can ever be fully understood and assembled into
accurate predictive modds (Pace 2001). Nature is Smply too complex.

The difficulty with exact representation of nature is even more problematic when
atempting to extend water quaity modelsto ecologica endpoints, such asfish kills, shdllfish
mortdity, or fish hedth. At the scae employed by most smulation models, the ecologica
processes associated with these attributes are too complex or stochastic to be characterized
mathematicaly. For this reason, most mechanigtic Smulaion models are only used to predict
biochemica variables such as chlorophyll a or dissolved oxygen concentration. Decisort
makers are then left in the difficult position of having to extend modd results to the water
body attributes of true concern to the public.

An dternative goproach to modeling is one that has been adopted by physicisswho
use probabiligtic expressons to characterize the aggregate effects of smal-scae molecular
motion. In asmilar manner, water quaity modders can summearize small-scale,
unpredictable, or unmanagesble processes with probabilistic expressons and then focus

modd development on describing the large-sca e effects of the most important controlling
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factors. Models of this type may be more useful for decision support because they can
provide direct answers to questions about large-scae ecosystem response. Such policy-
relevant questions broadly concern the rdaionship between a management option and an
attribute of concern to the public, such as, “Will the frequency (probability) of fish killsin the
Neuse estuary be reduced to atolerable level by a 30% nitrogen load reduction?’ Replication
of detalled environmentd processesis not usudly required to answer such questions.

These observations about the type of models ussful for supporting TMDL decisons
suggest the generd Utility of Bayesian networks (Pearl 1988). Also known as probability
networks, bdief nets Bayes nets, or influence diagrams, Bayesian networks are graphica
modd s thet depict the nature of relationships among a number of uncertain varidbles. These
relationships are quantified usng mathematica modds, data, or expert opinion that capture
the aggregate effect of the controlling processes. The effects of secondary processes are then
summarized with probabiligtic expressons.

We describe the devel opment and gpplication of a Bayesan network moded for
TMDL evduation in the Neuse River estuary (the Neuse Estuary Bayesian Ecologica
Response Network, or Neu-BERN). The network combines relevant information expressed
in avariety of formsinto one cohesive sructure linking riverine nitrogen loading to the
ecologica conseguences of importance tothe public. Mogt of the individua modd
relationships are described in detail in our previous publications. Our focus hereis on the

integration of these relationships into a Bayesian network useful for TMDL decison support.

Modeling M ethod
Fundamenta to the utility of Bayesian networks is ther grgphical depiction. Insucha
graph, round cdlls represent important system variables and connecting arrows represent

dependent relationships among these variables. Relaionships may reflect direct causd
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dependencies or the aggregate effect of more complex associations. The conditiona
independence implied by theabsence of a connecting arrow between two nodes gregtly
amplifies the modeling process by alowing separate submodes to be developed for each
relationship indicated by the presence of an arrow. These submodes characterize conditiond
probability distributions that reflect the aggregete response of eech variableto changesin its
up-arrow “parents’, together with the uncertainty in that response (Pearl 2000).

Submodels may be based on ether (1) mathematica representation of dominant
processes, (2) datigtica associaions derived from hitorica data, or (3) probabilistic
quantities dicited from scientific experts. Any model representetion or level of mechanistic
detall is gppropriate as long as the uncertainty associated with each reationship can be
quantified in the form of a conditiona probability digtribution. We bdlieve that modd s that
are based on mechanigtic understanding yet remain within the bounds of data-based
parameter estimation will be particularly useful toolsin thisregard. The incorporation of
mechanism will improve confidence in predictions mede for changed conditions, while the
datigticd methods will provide an empirica basis for parameter sdlection and dlow for
esimates of predictive uncertainty.

Unfortunately, gppropriate and sufficient observationa datamay not dways exis to
estimate the parameters of even smple mechanistic models. As a consequence, the dicited
judgment of scientific experts may be required to quantify some of the probabilistic
reldionships. Of course, the use of subjective judgment is not unusud in TMDL modeling.
Even the most process-based computer smulaions rely on subjective judgment asthe basis
for the mathematica formulations and the choice of parameter vaues. Thus, the explicit use
of scientific judgment in Bayesian networks should be an acceptable practice. Infact, by

formdizing the use of judgment through well-established techniques for expert assessment
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(see Morgan and Henrion 1990), the Bayesian network method may improve the chances of
accurate and honest predictions.

Once d| sgnificant sysem varigbles are linked in a sngle network using conditiond
probabilistic relationships, predictive digtributions of mode endpoints can be generated for
any set of vduesfor input variables. These predicted endpoint probabilities, and the rdaive
change in probabilities between dternative scenarios, convey the expected system response to
management while fully accounting for predictive uncertainties. Such uncertainties, which
arise from both mode uncertainty and naturd variability, give decison makers and
stakeholders an explicit charackization of the risk of non-attainment of TMDL management

objectives.

I dentification and Development of Model Relationships

A graphica modd representing the variables and relationships important to
eutrophication in the Neuse Etuary has been developed through ajoint process of
gakeholder involvement and scientific characterization (Borsuk et d. 2001a). Predictive
endpoints indude dgd densty, as measured by chlorophyll aconcentration, abundance of
the toxic microorganism Pfiesteria piscicida, fish population hedth, frequency of fish kills,
and shdllfish surviva (Figure 2). These arerdated to their immediate causd variableswhich
are then related back to their causes, and so on, back to variables that can ether be consdered
margind variables representing natura variability, or those that will be influenced by TMDL
management decisons. This quditative diagram then serves as the framework for
developing quantitative submode s to reate the sdected variables. Because intermediate
variables and relaionships are indluded in the modd only if they contribute to our ability to
predict modd endpoints, the modd can be best explained by arting with the endpoints and

proceeding in the “up-arrow” direction.
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Fish kills

Asreveded by the stakeholder study, the frequency of fish killsis an atribute of
sgnificant concern to the public and decison-makers of the Neuse basin. The current
stiertific beief isthat large fish kills are predominantly caused by a combingtion of low
oxygen bottom water (hypoxia) and wind conditions thet force that bottom water to the
surface, trapping fish dong the shores where they suffocate (Crowder 1998). Fish are
generdly more susceptible if they are dready in poor hedth Therefore, aprobabiligtic
prediction of fish kills depends on the hedth of the fish population, the tempord extent to
which the estuary experiences hypoxic conditions, and the frequency of crosschannd,
“trgpping” wind conditions (see Fg. 2).

Of oourse, afish kill requires the presence of fish in the area of the upwdling,
concurrent with the trapping winds and the presence of hypoxic bottom water. Even with this
combination, fish may be adle to react and swim away from the upwelling, making
mechanidtic prediction of the exact timing of fish killsimpossble. Therefore, we rdied upon
the dicited judgment of two experienced estuarine fisheries researchers to characterize the
probability of fish kills conditioned on agiven Sate of fish population hedth, the occurrence
of astrong cross-channd wind, and varying bottom water concentrations (Borsuk et d.
2002a). Asking for aprobability conditioned on anumber of circumstances dlowed the
stientigs to focus on the likelihood d afish kill only under certain given Stuations (upon the
coincidence of anumber of causative factors), rather than having to Smultaneoudy consider
the background frequency of the causative variables. The frequency of cross-channd winds
can be considered to be amargind node, without parents, snce historicd dataand

observation exist on their occurrence but they cannot be controlled by management.
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Prediction of the tempord extent of hypoxia, however, is conditiond on the pattern of bottom

water oxygen concentrations.

Hypoxia

Oxygen concentration is determined by both the rate of sediment oxygen consumption by
bacterid respiration and the duration that the bottom waters are separated from the surface
dueto Ainity Sraification (Paerl et d. 1998; Stanley and Nixon 1992). Thisrdationship
was quantified using a process-based mode of oxygen depletion thet is consstent with
established theory yet is smple enough to be empiricaly parameterized from available
monitoring cita (Borsuk et d. 2001c). The modd represents the processes of microbia
oxygen consumption and physica reoxygenetion, including the effects of temperature and
verticd dratification. Nonlinear regresson alowed for the direct estimetion of rate constants
from fidld data. The resulting mode can be used to probabilidticaly predict the frequency of
bottom weter hypoxia, conditiond on the annua average rate of benthic oxygen demand and
duration of dratification (see Fig. 2). Itisgenerdly bdieved that dratification begins to set
up whenever cross-channd winds are calm enough to avoid mixing for more than one day
(Luettich 1998). Therefore, avariable describing the number of consecutive days between
winds of sufficient strength to mix the system isthe only variable rdlevant to ratification.

Thisvariadle, like fish kills, is dependent on the frequency of strong cross-channd winds.

Benthic oxygen demand

Benthic oxygen demand is dependent on the decay rate of organic matter in the
sediments, which, in turn, is dependent on the amount of organic maiter available(Rizzoand
Chrigian 1996). In a eutrophic estuary such as the Neuse, most of the sediment organic

matter is bdieved to beintemdly derived via carbon fixation by dgae, rather than externdly
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derived viariver loading of terrestrid materid (Alperin e d. 2000). Because regular
measurements are not made of the organic matter decay rate or the sediment organic carbon
content, these intermediate seps are not included in the modd, and adirect link is shown
between dgd carbon production and sediment oxygen demand (see Fg. 2).

While abundant water qudity monitoring data exigt for the Neuse, the higtorica
values of dgd carbon production do not span the range that may be expected under a
sgnificant anthropogenic change in nutrient inputs. Therefore, we relied on crosssystem
data from 34 estuaries and coastd zones to parameterize a Smple, mechanigtic modd relating
carbon production and sediment oxygen demand, induding the effects of water column decay
and sediment buria (Borsuk et d. 2001b). To do this, we employed a hierarchica gpproach
which assumes partid, but not complete, commondlity in parameter vaues across different
estuarine systems. Both globa and systemspecific parameters were estimated using
Bayesaninference. Using the parameters estimated for the Neuse estuary, annud average
sediment oxygen demand can be expressed as a probabilistic function of water depth and

annua average carbon production (see Fig. 2).

Algal carbon production

Alga carbon production is primarily determined by dgd dengty, dthough water
temperature dso plays an important role (Mdlin et d. 1991). Additiondly, light intengty
and phoatic depth have been shown to be significant factors (Boyer et d. 1993; Cole and
Cloern 1987). However, while these are both observable variables (in that they can be
messured), they are neither manageable by nitrogen controls nor predictable from other
known factors (as water temperature is from the seasond cycle). Therefore they are not
explictly induded, and the variability they cause becomes part of the mode uncertainty (see

Fg.2)
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To predict primary productivity from agd dengty, we used a generdized verson of
the modd proposed by Cole and Cloern (1987) and subsequently modified for the Neuse by
Madlin et d. (1991) and, later, by Boyer et d. (1993). The modd, which expresses dally agd
carbon productivity as afunction of biomass and weater temperature wasfit to approximately
five years (mid 1994 through 1999) of biweekly monitoring dataa 11 mid-channd sampling

locations within the Neuse River estuary (Borsuk et d. 2002c).

Algal density

Among the factors believed to control dgd density are nitrogen inputs and water
temperature (Finckney et d. 1997). Additiondly, river flow has been shown to be an
important factor (Mdlin & d. 1993), perhaps because of its influence on estuarine sdinity,
turbidity, and water resdencetime. Detailed measurements of water temperature, river flow,
and river nitrogen concentration exist, making these suitable margind nodes (see Fg. 2).
Other potentid sources of nitrogen to the estuary, including atmaospheric sources and
groundweter (Paerl et d. 1995), are not consdered in this anadlysis because the TMDL
process only regulates nitrogen inputs from the river.

The rlaionship between dgd densty, as measured by chlorophyll a concentration,
estuarine location, water temperature, and incoming Neuse River flow and totd nitrogen
concentration was developed using aregression modd fit to gpproximately five years (mid
1994 through1999) of biweekly monitoring data(Borsuk et a. 2002c). Although dgd
dengty, itsdf, may be an important policy variable, of particular concern is the frequency
with which chlorophyll a levels exceed the Sate water quaity standard of 40 ng/L.
Therefore, avariable representing this exceedance frequency is shown explicitly in the
network (see Fg. 2) and its digribution is derived from the digtribution of chlorophyll vaues

as described by Borsuk et d. (2002d).
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Fish health
Ancther attribute of policy rdlevanceisfish populaion hedth. While a number of
factors affect the hedlth of the Neuse estuary fish population, only the effects of hypoxia can
be contralled through nitrogen reductions. Harmful effects of low oxygen on fish include
reduced feeding and growth rates (McNatt et d. 2000) and increased predation from larger
fish and invertebrates (Breitburg et d. 1994). Extensve hypoxiacan aso reduce usable
hebitat, dtering fish didribution and increasing competition (Pihl et d. 1991). These impacts
diminish the hedlth and productivity of the fish population and make them more vulnerable to
both disease and episodic fish kill events
One gpproach to predicting the population consequences of subletha oxygen effects

has been to develop individua-based modes (Huston et d. 1988) linking fish to dl the
processes and subprocesses associated with the effects (Braitburg et d. 1999). However,
information of sufficient detail to parameterize such amodd does not exist for the Neuse
estuary. Therefore, the reaionship between fish population hedth and the annua extent of
bottom water hypoxiawas icited from the same estuarine fisheries scientists questioned for
thefish kill modd (Borsuk et a. 2002a). Many different definitions of population hedth are
possible, 30 we asked the researchers to develop a definition that was consistent with their
knowledge and experience. They chose to use a categoricd varidble, with levels defined as,

Excelent: High average growth rates (> 0.6 mnvd); low incidence of visible

disease (<1%) on all fish but menhaden;
Good: Medium average growth rates (< 0.6 and > 0.2 mmvd); low incidence
of visible disease (<1%) on all fish but menhaden;
Poor: Poor average growth rates (< 0.2 mnvd); mediunvhigh incidence of

visible disease (>1%) on all fish but menhaden;
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where growth rate is measured in the field as described by Eby (2001). Atlantic menhaden
were specificaly excluded from measures of the incidence of visible disease because of their
high susceptibility to infections and parasites and the seasond nature of their disease patterns
irrespective of oxygen conditions (Goldman et d. in review).

With the hedlth categories defined, questions were next asked regarding the
probahility of populaion hedth being in each of the categories, given a particular tempora
extent of low oxygen. Since earlier sudies have reveded that low oxygen is only a concern
a high water temperatures (Borsuk et d. 2001c), we focused atention on the summer season.
The stientists assessments were based on the results of their monthly fish trawling and water
qudity sampling program in the Neuse estuary, aswell asa st of in Situ caging experiments
(BEby 2001). Such experience-based, probabilitic judgments represent the estimated net

result of a number of interacting processes and sources of uncertainty.

Shellfish survival

Shdllfish face asmilar Stuation asfinfish when subjected to hypoxia. However,
because shdllfish are sessile, it is not only their hedlth, but aso their abundance, thet is
threstened by longiterm exposure to low oxygen conditions. In this regard, both the duration
and saverity of hypoxiaare important consderations, prompting the arrows from nodes
representing both duration of stratification and dissolved oxygen concentration (see FHg. 2).

To relate oxygen status to shellfish abundance in the Neuse River estuary, we
developed a surviva modd for the clam speciesMacoma balthica (Borsuk et d. 2002b). The
surviva rate of M. balthica was chosen as an indicator for shellfish abundance because M.
balthica plays acritica rolein the Neuse ecosystem. This later-successon bivaveisthe
mgjor component of benthic biomassin the esuary aswell as avaluable food resource for

demersal fish species and blue crabs.
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Feld studies have shown that the late-summer pattern of abundance of M. balthica in
the Neuse dlosdy matches the pattern of extended exposure to summertime hypoxia (Powers
etd. Inreview). However, experimenta studies have not yet been performed to directly
address the sengtivity of this pecies to low oxygen conditions. Therefore, this sub-modd
relied upon the expert judgment of two marine biologists to provide the data used in model
building. The dicitation method that we used was based on a series of questions to establish
points on the cumulative digtribution function of timesto-desth for multiple dissolved
oxygen concentrations. Model parameters were then estimated from the assessed data using
Bayesan methods. The resulting modd probabiligticdly relates surviva of M. balthicato
time of exposure (duration of dratification) and dissolved oxygen concentration, as required

for the network modd (Figure 2).

Pfiesteria abundance

Thetoxicdinoflagellate, Pfiesteria piscicida, isaconcern to the public at least in part
because of the large amount of media attention it has received in recent years. It has been
blamed for having arole in the occurrence of fish kills both by directly attacking the fish and
by making them more susceptible to harsh conditions (Burkholder 1999). Pfiesteria hasdso
been found to adversdly impact the hedlth of laboratory researchers studying the organism by
causing respiratory and neurologicd distress (Glasgow et d. 1995). However, the potentia
thresat to people exposed to Pfiesteria under naturd conditionsis highly controversid
(Griffith 1999), and the ditinct role the organism playsin fish killsis uncertain (Stow 1999).
Many of the scientists we spoke with fdlt that Pfiesteria was just one of many stressors that
affect fish, and if Pfiesteria were not present in the estuary, other opportunistic organisms
would be. Thus, to satisfy the interests of the stakeholders, Pfiesteria abundance was

induded as avaridble in the modd. However, it was not explicitly linked to fish population
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hedth or fish kills, nor was a human hedlth effect included. Perhaps asmorelaboratory
research, fidldwork, and hedlth studies are conducted in the future, the role of Pfiesteria in the
network can be modified accordingly.

The factors potentidly contralling the presence of Pfiesteria celsin the water column
were recently investigaeted using a set of mesocosm experiments by Pinckney et d. (2000).
These experiments were designed to test the response of Pfiesteria zoogpores to arange of
environmental conditions and potentia prey species Results showed thet the dendity of
Pfiesteria-like organisms (PLOs) was postively corrdated with phytoplankton productivity
and totd phytoplankton biomass (as measured by chlorophyll @). Apart from the corrdaion
with agd biomass and productivity, PLOs showed no additiond sgnificant response to
nutrient, sediment, or mixing trestmentsin any of the experiments. These resullts suggest that
PLOstrack the abundance of their prey resources. Fensin (1998) dso found a postive
correlation between PLOsand phytoplankton biomass (as chlorophyll a) in fiedd samples
collected from the Neuse estuary during 1994 and 1995.

We used the data of Pinckney et d. to develop afunctiond relationship between dgd
dengty and PLOs (Borsuk 2001). Data collected by Fensin were not available for our
andyss. Our andyss showed that PLO cdl counts only reach levels of concern during the
summer season. For this reason, the functiond equiation was quantified using data collected
in the summer only. The reationship between adgd dendty and PLOs was found to be
approximately linear after alog-transformation of both variables, so parameters were
etimated usng ordinary least-squares regression.

In expressing concern over Pfiesteria abundance, stakeholders were probably
particularly concerned about densities thet are potentidly harmful. A leve of 250 cdls'ml of
toxic zoogpores has been cited as a concentration sufficiently high to be lethd to fish

(Burkholder et d. 1995). Therefore, the frequency of daily cdl dengties above 250 cdlgml
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in the summer season was included as a separate varidble in the network. Because the cell
counts recorded by Pinckney et d. incdlude dl Pfiesteria-like organisms, both toxic and

nontoxic, the results of our modd can be consdered an upper estimate of toxic forms.

Integration of Relationshipsinto Bayesian Network

The set of probabiligtic relationships described in the previous section can be joined
into one integrated network (Figure 3). Each rdationship describes the mogt likely vaue of
the response variable conditiona on the vaues of eech of its parents (solid linesin Figure 3).
The uncertainty in this rlationship, resulting from both modd error and parameter
uncertainty, is cadured by conditiond probability distributions (represented by dashed lines
in Figure 3). When margind, or unconditiond, digtributions are specified for each of the
outermogt variables (nodes without parents), the resulting predictive digtributions of dl the
remaining variables can be cdculated from the network. Margind didributions for the
vaiables river flow, nitrogen inputs, water temperature, and duration of Sratification can be
derived from historica deta and adjusted, as appropriate, to represent various management
aternatives.

We used Andytica, acommercidly available software program (Lumina 1997), for
implementing the Bayesian network for the Neuse estuary. Andytica alows for the use of
continuous or discrete variades rdated by any functiona expresson. Uncertainty can be
represented by awide variety of probability distributions and is propagated through the

network usng Monte Carlo or Latin hypercube sampling.

M odelBased TMDL Evaluation
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To illugrate the use of probabilistic network predictionsfor TMDL evaudtion, we
eva uated five possible scenarios corresponding to nitrogen reductions of 0, 15, 30, 45, and
60% relative to 1991- 1995 basdineinputs  The period 1991-1995 was chosen by the N.C.
Dividon of Water Qudlity as the reference period for the Neuse River TMDL (NCDWQ
2001b). Therefore, daily datafrom those years served as the basis for the margina input
variables. These variables were represented in the network as a multivariateempirica
digribution to maintain any underlying dependencdies (indicated by histograms connected by
dashed, double-headed arrowsin Figure 3). Missing vaues for the margind variableswere
estimated from flow models as described by Borsuk et d. (2002¢). The four nitrogen
reduction scenarios were evauated by multiplying dl riverine nitrogen concentrations by the
complement of the gppropriate reduction. All other functions and margind nodesin the
modd were left unchanged, and new distributions were computed for the variables of
interest. The Latin hypercube sampling method was used to draw 250 samples of dl modd
parameter and error digributions. The median predicted vaue for each modd endpoint as
wel asthe outer limits of the 50% and 90% predictive intervas were then cdculated to
indicate overdl response and predictive uncertainty. Although many of the functiond
relaionships among variables were developed to be gpplicable to multiple regions of the
estuary, we chose the middle region (Figure 1) as the focus of this assessment. Thisis
higtoricaly the region with the grestest extent of hypoxia and the most frequent occurrence of
fishkills

Modd predictions (Figure 4) show that under the basdine scenario of no nitrogen
reduction the annud average chloraphyll a concentretion in the middle region of the estuary
is expected to be dightly above 20 ngyL, and the state chlorophyll standard of 40 ngyL will
most likely be exceeded on more than 10% of the days. As nitrogen inputs are reduced, both

the average chlorophyll concentration and the chlorophyll standard exceedance frequency are
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a0 expected to decrease. However, only a reductions of 45% relaive to the basdineisthe
median exceedance frequency predicted to gpproach the 10% EPA guiddine (Office of Water
1997b).

Without nitrogen reductions, Pfiesteria-like cdl densties at levels of concern are
expected to occur between 5 and 17 days during the summer season. Thisvaueis expected
to decrease in concert with chlorophyll reductions. However, asis the case for chlorophyll,
the uncertainty in mode predictionsincreases as conditions depart from overal mean vaues
where the modd is most precise. In this case, the scenario with greatest precisonis
somewhat below basdine because the middle section of the estuary is more impaired rdaive
to the other sections to whichthe model was dso fit. The increase in uncertainty at grester
nitrogen reductionsimplies that the upper range of predicted vauesis essentidly equa for
each reduction scenario greater than 30%.

Under the basdline scenario, the summer surviva rate d Macoma clamsis predicted
to be low with amedian vaue below 10% but, given modd uncertainty and naturd
vaiahility, islikely to be as low as near 0% or as high as 40%. For comparison, during the
summer of 1997, thefirg year of extengve benthic surveying, the Macoma dam community
was estimated to be reduced to less than 20% of its spring populaion (Peterson et d. 2000).
The most likdly state of fish population hedlth under basdline conditionsis“good” with a
probability of 0.55, while“excdlent” has a probability of 0.32 and “poor” of 0.13. Both
summertime shdllfish survival and overdl fish populaion hedlth are predicted to increase
dightly in response to reduced nitrogen inputs.

In any scenario, fish kills are predicted to be rdaivey infrequent events. For this
reason, probabilities are expressad as the expected number of fish killsin a tenyear period.
Without any nitrogen reduction, the modd predicts between 5 and 20 killsin ten years

involving more than 1,000 fish in the middle portion of the estuary. For reference, there were
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8 fish kills of thisszein this region during the ten years 1989 through 1999. Additionally
there were 6 kills in which the number of fish involved was not reported (NCDWQ 20014).
Thefrequency of fish killsis not expected to change substantidly with nitrogen reductions.
The reason for the relaively minor response of the ecologica endpoints can be
discovered by looking a the trends in carbon production and days d summertime hypoxia
(Figure 5). While carbon production is predicted to decrease rdative to basdine vaues of
350to 500 gC/rr?ry in response to reduced dgd simulation, this effect is dampened out
further down the causal chain, so thet the change in the number of days of resulting
summertime hypoxiais rdativey inggnificant. The further we move down the probability
network and away from the decison varigble, the greater the predictive uncertainty. Thisis
due to the uncertainty thet is added in every successve rdationship, aswell astheincreasing

effects of naturd variability.

Using Model Resultsfor TMDL Decision-Making

Given a st of predictions regarding multiple ecologica endpoints, the choice of an
gopropriate load reduction depends onthe levels determined by decison-makersto be
acceptable for one or more of those endpoints. Such a determination might be based on an
andysis of associated costs and benfits (Johansson 1993), amultiatribute utility caculaion
(Clemen and Rellly 2001), arisk assessment procedure (Suter and Barnthouse 1993), or
compliance with a predetermined standard (Barnett and O' Hagan 1997). Choosing
aopropriate decison criteriais atask for policy-makers, not scientists, because it isavaue-
based, rather than belief-basad, exercise, involving the characterization of societa desires
rather than the behavior of anaturd system. Unfortunately, such an analysis has not been
performed for the Neuse management Situation. The only decision criteriathat currently exist

are the sate chlorophyll standard of 40ug/L and the EPA guidance mandating fewer than
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10% exceedances of thisstandard. Thus, our discussion regarding the use of the model
results for decision-making will focus on the chlorophyll endpoint, athough the idess will be
equally rdevant to any of the other endpoints once gppropriate decison criteriaare
determined.

If 10% is conddered the maximum acceptable frequency of exceedances of the state
chlorophyll standard, then the target nitrogen reduction can be graphicaly determined from
the plot of modd results (Figure 6) by drawing ahorizontd line & the 10% value and
observing where it intersects the curve of predictions. Drawing a verticd line from this
intersection to the horizonta axis suggests the necessary reduction. However, given the
uncertainty in modd predictions, even with afixed decison criterion the choice of anitrogen
reduction depends on the degree of confidence required by decison makers. Using only the
median predictions (or, equivaently, mode predictions that do not account for uncertainty)
implies 50% confidence thet the criterion will be met. If ahigher degree of confidenceis
required, then the auter bound of an gppropriate predictive interva must be used in the
graphicd determination. The difference between the nitrogen reduction necessary to achieve
50% confidence and the reduction necessary to achieve a higher level of confidence can be
congdered the margin of sifety.

Indusion of amargin of safety in the determination of a TMDL is required under the
Clean Water Act (CWA Section 303(d)(1)(c)). Generdly thisis accomplished through
consarvetive modd assumptions (Office of Water 1999). However, this practice confounds
vaues with scientific beliefs and obscures the fact that in making these assumptions the
moddler implicitly chooses a particular levd of confidence. Choosing the degree of
confidence required of amodd is arisk management decison thet should be made by
desgnated officids, not water-quality modelers. Such adecison should be based on

congderation of the potentia cogt to stakeholders of continued impairment despite the
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atainment of the chosen nitragen reduction. A modd that assesses the uncertainty associated
with predictions provides an explicit bass for choosing a TMDL that includes amargin of
safety. Given aquantitative water quality standard and probabilistic mode results expressed
as the degree of confidence that a criterion will be met for any given loading leve (Figure 6),
decisonmakers smply need to choose the percent reduction that corresponds to their desired
level of confidence,

The margin of safety depends on both the risk tolerance of decisonrmakers and the
predictive uncertainty in the water quaity modd being used to support the decison. Thus,
the size of the margin might be reduced in a@ther of two ways (1) decison-makersand
sakeholders must settle for alower degree of confidence in achieving their objectives, or (2)
predictive uncertainty must be reduced. Assuming thet the chosen confidence levd is based
on arationd process that cannot be changed (perhagps an unlikely assumption!), then the
margin of safety iswhdly rdiant on the uncertainty inherent in modd predictions. Because
the size of the margin of safety has a direct impact on the nitrogen reduction required and

therefore on the cost of management, adequate uncertainty andysis of TMDL moddls should

be ahigh priority.

Discussion

The probability network, NeuBERN, is one of multiple esuarine response modds
currently being used to inform the near-term sdection of a TMDL for the Neuse River (see
Bowen et d. and Wool & d. thisissue). Compared to the others, its process representation is
reatively smple (see Roeder e d. thisissue). Complex physica, chemicd, and biologicd
processes are combined into aggregate components described by messurable, operationally
defined varigbles. The mode does not invoke more than is necessary, emphasizing the fact

that it should not be considered a representation of redlity, but rather asmplification for a
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limited purpose. In this case, the purpose isto serve as aframework for TMDL decison
meaking by organizing current scientific understanding and assumptions. Thisinformation
may exid inavariety of forms, including historica monitoring data, cross system
comparisons, mesocosm results, modelling experiments, or observationd experience; a
Bayesian network can explicitly accommodate such variety.

Reaults of the integrated moded show that predictive uncertainty, arising from both
natural variation and knowledge uncertainty, ishigh. Thisis epecidly true for variables that
are not easily measured (such as shdllfish survivad), infrequent to occur (fish kills), or further
down the causd chain (fish hedlth). However, these types of variables are precisdly those
that are of greatest concern to the public and decison-makers. This suggests thet additiona
data collection is necessary, particularly on some of the more uncertain relationships. These
include the effect of nitrogen inputs and water temperature on dgd densty, the relaion
between agd densty and carbon production, and the connection between hypoxiaand fish
kills (see Figure 3). It should be kept in mind, however, thet thereis alimit to predictive
precison. Stochadtic variability isan inherent property of naturd systems and contributes
uncertainty that must be considered but, for a given modd, cannot be reduced. Recognizing
thisfact will help weater quaity stakeholders maintain redlistic expectations concerning
ecologicd forecadts.

The presence of ggnificant uncertainty in modetbased TMDL predictions should not
preclude decisve management action. Modd results indicate that nitrogen reductions are
likely to lead to ecologicd improvements however uncertain the magnitude of those
improvements may be. Prdiminary implementation plans can be made under the condition
that additionad monitoring and research will occur. In fact, modes thet quantify uncertainty
facilitete the prioritization of future data collection efforts based on ther ability to improve

predictions. After new information is obtained, new predictions are generated and arevised
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st of actions and research dtrategiesis developed. This process can be repeated until
stakeholder objectives are met or additional management costs exceed the expected bendfits.

Decison-oriented methodologies Smilar to that presented here have been proposed
previoudy for estuarine nutrient assessment. Jaworski and Villa(1981) suggest an
integrative gpproach usng multiple, publicly meaningful criteria. They acknowledge thet
various quantitative methods, from subjective analyses to complex mathematicd modds,
may be suitable depending on available informetion. They aso emphasize the need for
communicaing uncertaintiesin mode relationships by expressing predictions
probabiligticaly. However, their framework is merdly conceptua and is not accompanied by
Specific quantitative tools or gpplications. Our present anadlys's demondrates Bayesan
networks as one possible tool for thistype of evauation and presents results for a specific
TMDL application.

More recently, Fitzpatrick and Meyers (2000) reviewed methods for determining
estuarine nutrient criteria and highlighted the variety of approaches that may be possible,
depending on the Stuation. However, similar to the generd stance of the BPA, they suggest
that Smple, databasad modes be used only for initid screening purposes, to be replaced by
more redigic Smulation modds for find andyss. We disagree with this view and believe
that Smple modds focusing on the mgjor processes may be moreredigtic and useful
representations of natural systems than complex models that strive to include processes at
every scde. Saentific understanding of mechanism is advanced, but only to the point of
being able to characterize aggregate relaionships, not to quantify dl of the smal-scae
dynamics.

Recognizing the limits of mechanistic knowledge is especialy important when
atempting to extend water qudity atributes to ecologica effects. Ecologica variables are

more religble indicators of whether awater body is meeting its designated uses, and their



Borsuk et al. —Page 24

importance to future TMDL determination has been emphasized (NRC 2001). By permitting
caefully dicited expert knowledge as a practicd dternative to “hard” deta, the Bayesian
approach facilitates extenson of models to ecologica endpoints. Scientific experts can
asess the response of ecologica variables to their immediate causes and then summarize
remaining variability and uncertainty using probabiligtic expressons. Predictions expressed
as probahilities then give stakeholders and decision-makers redidtic expectations of the
chances of achieving desired outcomes. Thistype of knowledge can be expected to leed to

more informed and effective TMDL decisons.
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