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H I G H L I G H T S  

• Stochastic Energy Deployment System assesses research and development portfolios. 
• Outcomes of federal goals for technology cost and performance are evaluated. 
• Interviews obtained estimates of research and development uncertainty. 
• Lessons learned on conveying stochastic results to diverse audiences are discussed.  
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A B S T R A C T   

Governments are dealing with the challenge of how to efficiently invest in research and development portfolios 
related to energy technologies. Research and development investment decisions in the energy space are espe
cially difficult due to numerous risks and uncertainties, and due to the complexity of energy’s interactions with 
the broad economy. Historically, much of the U.S. Department of Energy’s in-depth research and development 
analyses focused on assessing the impact of a research and development activity in isolation from other available 
opportunities and did not substantially consider risk and uncertainty. Endeavoring to combine integrated energy- 
economy modeling with uncertainty analysis and technology-specific research and development activities, the U. 
S. Department of Energy commissioned the development of the Stochastic Energy Deployment System to support 
and improve public energy research and development decision-making. The Stochastic Energy Deployment 
System draws from expert-elicited probability distributions for research and development-driven improvements 
in technology cost and performance, and it uses Monte Carlo simulations to evaluate the likelihood of outcomes 
within a system dynamics energy-economy model. The framework estimates the uncertain benefits and costs of 
various research and development portfolios and provides insight into the probability of meeting national 
technology goals, while accounting for interactions with the larger economy and for interactions among research 
and development investments spanning many energy sectors.   

1. Introduction 

Too often those designing portfolios of research and development 
(R&D) projects fail to adequately address the risk and uncertainty 
inherent in R&D. The uncertainties are not just about the technical 
probability of success but also market adoption and its associated eco
nomic impact. Decision analysis offers a range of tools to evaluate and 
optimize R&D portfolios, including methods to explicitly represent un
certainties and evaluate their effects on portfolio selection. Quantitative 

treatment of uncertainty and stochastic analysis of R&D portfolios can 
provide valuable insights into potential benefits and help R&D managers 
develop portfolios that are more robust and flexible in the light of a wide 
range of possible futures. By nature, portfolio assessment under uncer
tainty indicates the robustness of R&D investments by providing deci
sion makers with most likely outcomes and ranges of outcomes. When 
paired with good visualization platforms, planners can quickly identify 
portfolios with high likelihood of success and acceptable levels of 
downside risk. Many of the existing portfolio analysis efforts focus on a 
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single sector, rather than the broader energy economy. Since energy 
R&D has many downstream effects, modeling the interactions among 
multiple energy sectors and the impacts on the larger economy provides 
decision makers with richer information to evaluate R&D investments. 
In this paper, we describe an energy-economy modeling framework that 
has the potential to support and improve public energy R&D decisions 
by explicitly accounting for risk and uncertainty. 

The Stochastic Energy Deployment System (SEDS) model1 is an en
ergy market model, using a system dynamics methodology,2 that 
explicitly addresses uncertainties in future energy technologies, mar
kets, and policy. SEDS was designed to provide new uncertainty- 
informed insights to U.S. Department of Energy (DOE) managers in 
the Office of Energy Efficiency and Renewable Energy (EERE), and other 
interested stakeholders, in order to make more informed decisions about 
DOE’s R&D portfolio. SEDS was developed by an interdisciplinary team 
led by a group at the National Renewable Energy Laboratory (NREL), 
and SEDS modules were developed by five other national laboratories3 

and Lumina Decision Systems between 2007 and 2011, building on an 
associated R&D risk analysis effort begun in 2004. The model uses 
elicitations from panels of technology experts to assess the uncertainty 
about the cost and performance for 32 energy technologies given 
alternative R&D budgets. And it uses stochastic simulation to examine 
the effects of alternative R&D funding levels and technology portfolios 
on technology success, future market adoption, energy costs and con
sumption, and greenhouse gas (GHG) emissions for the entire United 
States for up to 25 years into the future. 

This article identifies key lessons learned from the development and 
use of SEDS. The lessons should be of value to the international energy- 
modeling and R&D-planning communities by illustrating a useful 
approach that helps decision makers evaluate and prioritize R&D pro
jects for energy technology innovation. Instead of presenting quantita
tive findings, which were preliminary and now outdated, we present 
illustrative results, describe key methods used to develop the model, and 
discuss the advantages and disadvantages relative to other methods for 
R&D portfolio management. 

Section 2 describes previous and related work, highlighting the lack 
of other efforts that evaluate R&D portfolios under risk and uncertainty 
across all sectors of the energy economy. Each of the following sections 
address both a research question and the corresponding results. Section 
3 discusses the expert elicitation process used to estimate the effect of 
R&D budgets on future performance of energy technologies, resulting in 
a discussion on the comparison of this approach and others in the 
literature. Section 4 highlights the research methodology and describes 
the SEDS modeling architecture; a key takeaway is the trade-offs for 
usability by stakeholders. Section 5 reviews the methods for communi
cating the modeling framework, highlighting graphic styles that resulted 
from this work. Section 6 highlights conclusions, lessons learned, and 
issues for future work. 

2. Previous and related work 

Should one invest a limited R&D budget in one or just a few tech
nologies in the hope of making rapid advances, or should one spread the 

investment over a wider range of technologies as a hedge against un
certainty but risk slower progress? Researchers in many fields have 
studied such general questions of portfolio management under uncer
tainty over the last few decades. The first such work was in the financial 
sector [1,2] which was then applied to industry R&D [3,4,5,6,7,8], and 
more recently to public R&D investment [9,10]. Yet, there is still no 
consensus on the best or most practical method of evaluating portfolios 
which depends on the specific needs of an organization [11,12] and the 
technologies being evaluated [13]. 

Key criteria used to evaluate approaches to portfolio allocation 
include their ability to manage multiple objectives, account for uncer
tainty, communicate insightful recommendations, and update the 
approach over time. Dutra et al. [12] and Verbano and Nosella [14] 
classify analytic methods into three types: qualitative, quantitative, and 
hybrid. 

Common qualitative approaches include the Balanced Scorecard 
[15,16], which can help determine how the criteria evaluated for a 
project impact an organization’s strategic vision, and simple scoring 
protocols [3,17] that seek to balance project selection through struc
tured question frameworks. These types of approaches have the 
advantage of being easy to communicate to stakeholders and simple to 
update over time. However, it is challenging to use them with multiple 
criteria and to incorporate risk and uncertainty explicitly. 

Quantitative methods include financial analysis, data envelope 
analysis [18,19], and numerous optimization techniques, including 
linear programming [20,21,22], integer programming 
[20,21,22,23,24], nonlinear programming [25,26], and dynamic pro
gramming [27,22,28,17,29]. In general, these techniques evaluate 
quantitative trade-offs between decision variables to optimize their 
criteria or objective function. They can handle uncertainty exogenously 
using sensitivity analysis, scenario analysis, and Monte Carlo analysis, or 
endogenously using stochastic dynamic programming with constraints. 
However, stochastic dynamic programs can be difficult to solve 
computationally and usually require dramatic simplification to be 
tractable. Though quantitative methods can provide sounder and more- 
principled results than purely qualitative methods, they have much 
greater demands for data and quantified expert judgments, as well as 
much computational complexity [30,12,31]. 

Hybrid approaches, such as using bubble charts and direct scoring, 
combine quantitative methods with qualitative input data. These ap
proaches have sometimes been found to improve the success of a project 
and the portfolio selection process, as measured by project alignment 
with strategic direction, portfolio value, project delivery, and balance 
[30,12,17]. The analytic hierarchy process is another hybrid method 
that uses a set of criteria and considers both qualitative and quantitative 
input data to recommend a decision [32]. However, the qualitative el
ements of hybrid approaches render them more subject to bias or 
overconfidence, which potentially leads to less reliable and consistent 
portfolio decision-making. 

For any method, a key early task for decision makers is to select the 
criteria to evaluate portfolios and outcomes. Selection criteria may be 
categorized as technological, economic, environmental, and social [31], 
and each of these metrics may be represented as a probabilistic outcome. 
In the technological category, typical evaluation criteria include per
formance attributes, such as efficiency [25,33], reliability, and safety 
[34]. Economic criteria may include total investment cost [35], input 
costs (e.g., fuels, feedstocks, and electricity) [36], net present value 
[37,38], and payback period. Environmental metrics may include 
emissions of criteria pollutants and GHGs [39], water quality, land use, 
and noise [40]. Criteria in the social category may include job creation 
and total social benefits [41]. 

Table 1 lists references to analytic methods organized by the three 
types (quantitative, qualitative, and hybrid) over the four categories of 
criteria. We review these approaches below for selected historical ap
plications, first in industry, and then for supporting public-sector de
cisions on energy R&D, of most relevance to SEDS. 

1 The model can be found at https://www.nrel.gov/analysis/seds/.  
2 In contrast to equilibrium models, system dynamics neither defaults to the 

assumption that systems or economies are inherently in equilibrium nor as
sumes market actors have perfect information or are perfectly rational. The goal 
of system dynamics models is to simulate nonlinear dynamics and feedback 
loops observed in real-world systems using traceable and interpretable se
quences of causal effects and decision criteria that can be of high value to de
cision makers.  

3 Argonne National Laboratory, Lawrence Berkeley National Laboratory, 
National Energy Technology Laboratory, Oak Ridge National Laboratory, and 
Pacific Northwest National Laboratory 
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2.1. Applications to R&D investment decision-making 

Analytical approaches to R&D decisions have been used in many 
industries, including pharmaceuticals [7,8], biotechnology, and energy. 
For example, a multi-objective optimization was used to maximize both 
profit and the probability of being profitable across a portfolio of five 
therapeutic antibody projects [42]. One multi-objective strategy applied 
to new product development combined stochastic simulation with ge
netic algorithms [43]. Real options methods were used to analyze stra
tegic partnerships for biotechnology start-ups, based on entrepreneurs’ 
perceptions of the market and the promise of new technologies [44]. 

For an example in the energy sector, [28] developed an analytical 
tool to assess the role of enhanced oil recovery in a carbon capture and 
storage (CCS) portfolio. Their goal was to allocate research funding 
strategically to forestall decreased funding for large-scale demonstration 
projects. They used expert elicitation to assess the future costs of carbon 
capture under policy scenarios [45,46]. Similarly, Bistline [27] devel
oped a stochastic R&D portfolio management framework and applied it 
to the electric power sector by using expert elicitation data of techno
logical progress [47,48]. 

Such industry-supported approaches have typically been limited to 
narrow sets of projects within a single sector, whereas public R&D 
decision-making, particularly in the energy sector, typically spans 
multiple sectors and systems. This broader perspective poses new chal
lenges, including comparing technologies across sectors (e.g., building 
efficiency, vehicle technology, and electric power) and understanding 
the economic and environmental effects on society as a whole. 

2.2. Recent approaches in economy-wide energy R&D portfolios 

Several studies in the last decade have addressed the need for 
improved energy R&D portfolio management and investment modeling 
in the public sector [49,50,51,52,53]. To develop optimal R&D portfo
lios, one must estimate the effect of R&D spending on technology per
formance and hence on resulting market adoption. A major limitation of 
much R&D portfolio modeling has been the lack of explicit character
ization of uncertainty in both research and commercialization outcomes 
[10]. However, recent research, including the SEDS project described 
here, has demonstrated modeling approaches that do both. They use 
expert elicitation, technology-specific techno-economic modeling, and 
market modeling and/or integrated assessment models (IAMs) within a 
decision framework [9,54,55,56,57]. See the Supplementary Informa
tion for additional explanation of such an approach. 

Anadon et al. [9] identify the continued need for innovation and 
progress in the public energy R&D decision support modeling frame
works. Specifically, there continues to be a need for a full modeling 
framework that explicitly accounts for uncertainty in future costs based 
on various public R&D funding levels at a very granular level and for 
market dynamics such as competition, substitution, and complements 
between technologies. Additionally, this modeling framework needs to 
provide this information clearly and transparently [9,57]. 

Many of the efforts we reviewed in the literature focus on a single 
sector and/or are limited by their macroeconomic scope [27]. However, 
for energy R&D, virtually every part of the economy is impacted. In this 

paper, we describe an energy-economy modeling framework, SEDS, that 
has the potential to support and improve public energy R&D decision- 
making. SEDS was designed to draw from expert-elicited probability 
distributions of the potential improvement in technology cost and per
formance for different investments in R&D. SEDS then competes these 
potential improvements for each technology to generate distributions of 
the potential market penetration of the different technologies for the 
various levels of R&D investment. 

SEDS handles evaluation of multiple objectives (including economic 
impacts, public health impacts, climate impacts, and returns on R&D 
investment), which are essential for a diverse stakeholder group. SEDS 
also incorporates technology interactions over time. Further, SEDS 
provides insight on the probability of achieving the goals set for tech
nologies, on the value of a portfolio approach to R&D, and on the bal
ance of the R&D portfolio over risk, return, time frames, technologies, 
and markets. SEDS was designed to have very fast runtimes so that it 
could provide real-time support for decision makers, but to do this 
resulted in various model and computational simplifications that raise 
important issues, as always happens with modeling efforts. 

3. Expert elicitation process 

Any attempt to project the effects of R&D on emerging energy 
technologies faces large uncertainties. It is difficult to predict whether or 
when R&D will lead to technical breakthroughs and, if it does, how 
much it will improve performance and reduce costs. Separate, but also 
difficult, is predicting how far any such improvements will accelerate 
market adoption, and hence affect the cost of energy and GHG emissions 
decades into the future. It is in the nature of innovations that there is 
little or no past data from which to estimate their future performance. 

Thus, as part of the SEDS project and associated Risk effort at DOE, 
we turned to structured interviews (expert elicitations) from panels of 
experts to obtain estimates of the uncertain effect of R&D investments in 
each technology on its future performance. We asked the experts to 
express their considered judgment, including their uncertainty in the 
form of points on probability distributions. Each expert provided dis
tributions of the costs, efficiency, and other metrics for each technology 
at one or two future points in time for different levels of R&D funding. 
These distributions were then used in Monte Carlo simulations of the 
techno-economic performance of each technology. We developed tor
nado diagrams of the effects of each parameter on the performance of 
each technology to obtain an approximate ranking of where R&D might 
have the largest benefit (e.g., [58]). These risk analyses were conducted 
for an initial set of energy efficiency and renewable energy technologies 
on an experimental basis to see how well this elicitation and analysis 
process worked and what changes were needed. Many of the results from 
the Risk/SEDS team were published in technology-specific reports and 
presentations [59,60,61,62,58,63]. 

Expert elicitations of the effect of R&D on future improvements in 
energy technologies were also done in this period by teams at Harvard 
University [47], the University of Massachusetts [64], and Fondazione 
Eni Enrico Mattei (FEEM) in Italy [65]. Their expert elicitations exam
ined biofuels, bioelectricity, carbon capture and sequestration, nuclear 
power, and solar technologies. 

Table 1 
Overview of representative portfolio and project evaluation studies, broken down by subject matter and whether they are quantitative versus qualitative.  

Quantitative Qualitative Hybrid 

Economic 
[1,5,7–9,13,20–23,26,27,29,37–39,44,46,54,87–108] [3,11,24,30,33,34,36,93,103] [3,9,12,24,32,89,95,106,109–111] 
Environmental 
[9,13,20,37,39,46,54,56,87,90,99,108,112–115] [33,34,36] [9,116,117] 
Social 
[37,99,108,114,118] [33,34,36,41] [17,41] 
Technology 
[9,20,22,25,27,37,46,64,99] [3,33,34] [25,41,111]  
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3.1. Scope of elicitation 

The Risk/SEDS project addressed 36 technologies, including three 
types of photovoltaics; two types of concentrating solar power; seven 
technologies to produce and store hydrogen; two kinds of geothermal, 
cellulosic ethanol, onshore and offshore wind; and multiple technologies 
for energy efficiency in buildings and industrial processes. Each expert 
typically assessed several related technologies within a single DOE 
technology program—such as all photovoltaics or all technologies to 
produce hydrogen. The experts included scientists and engineers with 
professional experience in each technology, from universities, national 
laboratories, and industry. The SEDS team interviewed 3–9 experts 
(average 4.6) for each technology, and a total of 167 experts. 

Experts estimated several parameters for each technology—such as 
conversion efficiency, unit capital cost, and operating and maintenance 
cost—and an average of 4.5 parameters per technology. Interviews were 
first done for the Risk studies between 2006 and 2008, and then to also 
support SEDS in 2009 and 2010. Experts were asked for estimates in two 
future “goal years,” usually 2015 and 2025. Experts were also asked to 
estimate technology performance contingent on three levels of R&D 
funding from DOE—zero, the current plan, or double the current plan. In 
some cases, experts also estimated future learning rates (i.e., percentage 
decrease in unit cost per doubling of cumulative capacity of the tech
nology manufactured and deployed) after the farthest goal year. In each 
case, experts provided a minimum and maximum conceivable value for 
each quantity. A total of 1,304 quantities were assessed (technologies ×
parameters × funding levels × goal years). 

Experts were provided a paper for the in-person elicitations or an 
online form on which to record estimates for each technology and 
parameter, for each of two goal years and three R&D funding levels, 
including:  

• A reference value: current best estimate of the technology parameter  
• Minimum and maximum: extreme conceivable limits for the quantity 

generally based on physical limits and material costs  
• Probability Of Advance (POA): characterizes how likely it is that the 

R&D investment generates an appreciable advance in the tech
nology—a value of up to 100%—or that the research fails  

• Triangular Distribution: If the R&D is successful, the advance in the 
technology is characterized by a triangular distribution described by 
the 10th percentile, mode and 90th percentile, with the 10th/90th 
percentiles the values such that there is a 10%/90% chance the 
actual value would be less than, or greater than, these respective 
percentiles. 

The mode and 10th/90th percentiles define a triangular distribution 
for how much improvement in the technology could be realized by the 
R&D investment, conditional on the probability of advance that the R&D 
is successful. Each expert assessed a distribution for each of the two goal 
years and each of the three R&D investment levels in each technology, 
defining the likelihood that the R&D investment would be successful 
(POA), and if so, what the triangular probability distribution would be. 
Interviewers checked initial results for any possible incon
sistencies—such as more R&D leading to worse performance—and gave 
experts time to carefully review and revise their estimates. 

3.2. Protocol to minimize biases 

Cognitive psychologists have long studied the process of human 
judgment in expressing uncertain knowledge using probability distri
butions [66,67]. In experiments looking at distributions for known 
“almanac” quantities, the cognitive psychologists have found that these 
judgments are subject to systematic errors and biases. A consistent 
finding is of overconfidence (i.e., that people tend to underestimate the 
probability that the true value is far from the value they consider most 
likely). One cause is confirmation bias, which is the tendency to believe 

evidence that confirms your expectations and dismiss evidence that does 
not. Another is the anchoring and adjustment heuristic, which is the 
tendency to focus on the value a person considers to be most likely and 
then adjust it insufficiently to reflect “surprise” factors that might lead to 
a more extreme outcome, either much higher or much lower. Though 
much of the empirical research used college students as subjects, 
research shows these effects also apply to experts making judgments in 
their field of expertise [68]. 

Practicing decision analysts have developed protocols to conduct 
expert elicitations employing a variety of strategies to minimize these 
errors and biases [69,67,70]. For example, to reduce the confirmation 
bias, the interviewer starts with a careful review and discussion of 
relevant studies and evidence, asking each expert to carefully consider 
evidence that runs counter to expectations. To counter the anchoring 
bias, interviewers use “mental stretching” exercises: they ask each 
expert to brainstorm and describe conceivable extreme events or factors 
that could lead the quantity of interest (e.g., the future cost of photo
voltaics) to be surprisingly large or small. 

The Risk/SEDS team adapted a standard protocol for expert elicita
tion described in Morgan & Henrion [67] that used these and other 
strategies to minimize biases. The team provided a two-day workshop to 
train interviewers for each technology program. These interviewers then 
conducted the elicitations. Most elicitations were conducted face-to- 
face, but some were done remotely via telephone or web-meeting. In 
all cases, experts filled out the forms—paper or online—described 
above. 

3.3. Aggregating over experts 

Several methods have been proposed to combine assessments from 
multiple experts [71,72] based on different models of their dependence. 
Most comparisons of their performance have concluded that the simple 
method of averaging of probabilities—not quantiles—gives good results, 
perhaps because doing so tends to counteract overconfidence. Like most 
expert elicitation projects, we adopted that simple method and weighted 
each expert equally in the absence of reliable information about their 
individual expertise [73,69,74,75]. 

The results from the aggregated distributions were provided as in
puts into SEDS, which used them in the Monte Carlo simulation to 
propagate the uncertainties through the model. SEDS interpolated per
formance for each year from the base year through to each goal year. In 
some cases, it used a learning rate (percentage improvement per 
doubling of cumulative capacity of that technology) to project perfor
mance after the final goal year, subject to the extreme limits provided on 
each parameter. 

3.4. Reflections on the expert elicitations 

A comparison of the three expert elicitation studies of the effects of 
R&D on energy technologies by groups at Harvard, the University of 
Massachusetts, and FEEM [64] found considerable differences among 
expert opinions on many metrics, with little overlap of their distribu
tions. For several quantities, the variance that was due to differences 
among experts exceeded the variance that was due to the uncertainty 
expressed by each expert. In a few cases, these could reflect substantial 
differences of opinion among experts, but the differences suggest most 
experts were poorly calibrated and expressed overly narrow ranges, 
which is consistent with many studies of expert elicitation. The aggre
gation process, which involved calculating a simple weighted average of 
the probability density over the experts, tends to reduce such over
confidence in the aggregate distributions. The comparison found good 
agreement among the aggregated distributions from the three studies. 
The variance within each study dominated the variance between the 
studies, except for nuclear power, for which there was substantial 
disagreement among the studies. 

These three studies used a range of elicitation protocols. Some 
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emailed experts survey forms with little or no opportunity for personal 
interviews and with limited opportunity to offer methods to reduce 
biases. The Risk/SEDS study largely interviewed experts face-to-face, 
and interviewers were encouraged to follow a protocol to reduce over
confidence. Because the Risk/SEDS expert elicitation was a first exper
imental test, its results were not publicly released; thus, we could not 
compare them with the results of the three other studies, even though 
they addressed similar technologies. Nor could we compare the results 
with actual progress of these technologies over the decade since the 
assessments were made. Preliminary comparison of the results from the 
Harvard, University of Massachusetts, and FEEM studies with actual 
values in 2018–2019 [76] show that the cost of some technologies, 
notably photovoltaics, dropped far more rapidly than most of the experts 
estimated they would less than a decade earlier. After just 10 years, 
photovoltaics is already competitive with fossil fuels for many applica
tions, including grid-level power in most parts of the world—an outcome 
that had less than 1% probability by 2030, according to the aggregated 
distributions from those studies.4 Far more rapid reductions in costs than 
experts projected have similarly been seen for wind [77]. 

One might have expected experts would tend toward overoptimism 
about technologies on which they were working in R&D. Surprisingly, 
many have turned out to have been overly pessimistic. Nemet [78] de
scribes the many factors contributing to the dramatic and sustained fall 
in the prices for photovoltaics—including high early demand from niche 
applications that were not cost-sensitive, such as satellites; government 
policies to incentivize the market, such as volume purchasing, credits, 
and subsidies, notably in the United States and then in Germany, Japan, 
and China; and persistence by farsighted entrepreneurs and commercial 
investors. Government R&D was particularly important in early stages, 
but these other factors also played important roles in long-run learning 
curves and adoption rates. By describing the many interacting factors, 
Nemet [78] underscores the challenge in distinguishing the effects of 
government R&D funding from the many other factors around the world 
on the cost-performance of energy technologies. Nevertheless, the pro
cess of making these judgments explicit, including the uncertainties, 
comparing estimates from multiple experts (and multiple studies), and 
exploring their implications via an integrated model has provided 
valuable insights to guide R&D planning that would be unavailable 
without quantitative modeling of the uncertainties. 

4. Research methodology for SEDS 

The expert elicitation described above estimates the uncertain de
gree to which R&D may improve the technical performance and cost of 
each energy technology, but it does not address commercial adoption. 
Even a breakthrough in an innovative technology that would reduce the 
cost of electricity by a factor of four would not be adopted unless it 
became less costly than competing technologies for important applica
tions. The ultimate impact of R&D on an energy technology thus also 
depends on the progress of competing technologies. Cross-sector in
teractions can also be important. For example, widespread adoption of 
efficient electric heat pumps for space heating might reduce the demand 
for natural gas, lowering its market price and making it more competi
tive for electric power generation. That might reduce the leverage of 
R&D that reduces the costs of renewable electric technologies to move 
them into the market. The need to model such market dynamics within 
the energy-economic system and the need to evaluate other impacts, 
including GHG emissions, were key motivations to develop SEDS. 

The design of SEDS reflects its primary goal of forecasting the im
pacts of technology R&D to help decision makers prioritize R&D funding 

investments. Therefore, we used a system dynamics framework that 
enabled rapid computation and use as an interactive tool, necessary 
qualities for decision makers. We recognized from the start the impor
tance of representing uncertainty. Following practices in the field of 
decision analysis, SEDS focuses explicitly on decisions, uncertainties 
(chance variables), and objectives. The primary decisions are the fund
ing levels of EERE R&D programs in energy efficiency and renewable 
energy. Uncertainties include not only the effect of R&D funding on the 
cost and performance of emerging technologies but also a broad array of 
macroeconomic, energy supply and pricing, and policy considerations 
that affect technology adoption, economic, and environmental impacts. 
The three primary objectives used were to minimize consumer expen
ditures, GHG emissions, and energy imports. However, the number and 
types of objectives can be readily expanded within the modeling 
framework. 

In SEDS, we represented R&D funding decisions at the three funding 
levels shown in Table 2. Each funding level affects the distribution of 
cost and performance forecasts for modeled EERE technologies. Though 
the funding levels’ distributions are permitted to overlap, increased 
funding leads to an equal or higher probability of a technology having 
lower cost and improved performance than at a lower funding level. For 
a given SEDS simulation, the modeled R&D funding level can vary by 
EERE technology, which permits extensive funding scenario analyses 
and identification of optimal funding strategies or portfolios. 

This section provides an overview of the SEDS architecture, 
including uncertainties, objectives, model scope, the system dynamics 
framework, technology adoption methodology, and modeling consumer 
expectations. The SEDS development process was a unique collaboration 
among nearly 30 experts from 6 national laboratories and three 
consulting organizations. For more information on the development 
process, see the supplementary information. 

4.1. Modeling uncertainty 

The final version of SEDS captures uncertainty in the energy econ
omy by sampling from probability distributions specified for the vari
ables in Table 3. These uncertainties were relevant at the time of initial 
model development, and they were chosen for a variety of reasons. 
Technology road mapping and sensitivity analysis on the cost of energy 
generated and, for energy efficiency measures, the cost of energy 
conserved highlighted the technology-specific uncertainties of highest 
consequence to consider for expert elicitation and probabilistic repre
sentation. The analysis focused on macroeconomic uncertainties most 
likely to affect aggregate demand for goods and services, and thus en
ergy consumption. Wherever policy implementation was highly uncer
tain and likely to influence the outcome of R&D investments, the team 
modeled those policies probabilistically to capture a range of imple
mentation pathways. Lastly, stochastic representation of oil, gas and 
coal supply and price, along with several consequential market de
terminants, provided a tractable alternative to endogenously modeling 
the breadth of global commodity markets. 

In most cases, SEDS represents these uncertainties using triangular 
distributions because of their simplicity in capturing minimum, most 
likely, and maximum values. For the costs, performance, and learning 
rates for each technology, the distributions are based on appropriately 
aggregating the distributions from the expert elicitations. The proba
bility of uncertain discrete events, such as enactment of a carbon tax or 
emissions cap, is captured through Bernoulli distributions. Early 

Table 2 
R&D funding level decisions.  

R&D Funding Level Description 

None No R&D funding from EERE 
Target Planned funding from EERE 
Over-Target Double the planned funding from EERE  

4 An important caveat is these assessments had baseline assumptions on 
which the experts built their estimations. For example, Verdolini et al. [107] 
used a certain capacity factor assumption, which may have caused associated 
equations to be higher than the experts may have intended. 
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implementations of uncertainty in SEDS did not consider correlations 
among probabilistic distributions, and thus treated all uncertainties as 
independent distributions. However, SEDS allows for the specification of 
correlation among uncertainties, and the team viewed this as an 
important area for future data collection because the representation of 
correlations can strongly affect simulated outcomes. In addition, the 
integrated nature of the SEDS modeling architecture results in correlated 
outcomes. For example, a highly successful wind turbine R&D program 
that lowers the cost of wind turbines will result in greater deployment of 
wind turbines at the expense of natural gas or solar power plants. The 
cause-and-effect relationship between competing technologies and 
market environments naturally creates correlation between uncertain 
variables (e.g., natural gas prices) and the realized benefits of R&D 
programs. See Supplementary Information for further discussion. 

Some components rely on scenarios generated by a combination of 
uncertain assumptions in more specialized deterministic models, such as 
low, medium, and high macroeconomic scenarios. SEDS converts these 
to probabilistic values by drawing from a triangular distribution with a 
minimum value of 1 (the low scenario), a most-likely value of 2 (the 
medium scenario) and a maximum of value of 3 (the high scenario). 
Whenever the value is not a whole number, SEDS interpolates between 
the nearest scenarios using linear weighting. For example, given a 
random draw of 2.5 for the macroeconomic scenario, SEDS interpolates 
between the medium and high macroeconomic scenarios’ values for 
gross domestic product, interest rates, and so on. This preserves the 
inherent dependence among those variables in the deterministic mod
el—with a modest loss of fidelity. SEDS also models dependence be
tween technology costs, performance, and learning rates to ensure these 
characteristics can only improve or stay constant over time and for 
increasing R&D funding levels. 

SEDS supports extensive methods for sensitivity analysis to estimate 
and compare the effects of uncertainties in each input quantity. A user 
can hold one or more uncertain inputs at a single value (or set of values 
over time) or set a range of discrete values, while other uncertain vari
ables are randomly sampled during a Monte Carlo simulation. A user can 
also include or exclude a wide variety of policies and explore R&D 
funding levels for a portfolio of technologies. Importance analysis esti
mates the relative effect of uncertainty in each uncertain input on results 

of interest using the rank correlation of the random samples for each 
input and the result. This provides guidance on which uncertain inputs 
might be priorities for further work that could refine the analysis, like 
gathering more evidence or expert judgments to refine the analysis. 

4.2. Objectives 

The objectives of the R&D funding focus on three metrics to mini
mize cost of energy, GHG emissions, and energy imports—though the 
model can expand to consider any number of objectives and beneficial 
outcomes from R&D funding (e.g., pollutant reduction, job creation, 
etc.). SEDS compares decisions on energy-related R&D funding levels 
and allocation by their effect on the probability distributions for these 
three metrics, which may be summarized by their expected (mean) 
benefits and variance or percentile ranges. Some portfolio decisions lead 
to synergistic improvements in the objectives, where the benefits of the 
portfolio exceed the sum of the benefits from individual technology 
funding decisions. 

These objectives can be combined into a single weighted composite 
score, such as equivalent dollar value or utility provided. This enables a 
Markowitz-style efficient frontier curve to compare the mean scores 
(expected benefit) of selected portfolios against their standard deviation 
(risk)—where standard deviation, the square root of the variance, 
measures how widely the probabilistic outcomes deviate from the mean 
score. This view helps identify which portfolios provide the greatest 
benefit at a chosen level of acceptable risk, as illustrated in Fig. 1. 

SEDS calculates the cost-effectiveness of energy-related R&D funding 
for each technology—for example, comparing the change in funding 
from Target to Over-Target levels with the associated benefit (reductions 
in expected energy cost, oil imports, and GHG emissions). Cost effec
tiveness metrics can vary among benefits per dollar (e.g., barrels of 
imported oil saved per dollar of funding), utility per dollar (e.g., the 
weighted composite score per dollar of funding), the rate of return (e.g., 
the annual rate of return in reduced energy expenditures for an R&D 
investment) or payback times (e.g., how many years before the R&D 
investment pays for itself). R&D planners can view these metrics as 
probabilistic distributions or as some statistics (e.g., mean, variance, 
means or percentiles) for the distribution. This can guide prioritization 
of R&D funding by technology subject to a finite budget, recognizing 
that model simplifications may not capture all the benefits of a tech
nology. For example, in the power sector, the focus on levelized cost of 
energy may not capture a technology’s contribution to capacity value or 
ancillary services. 

4.3. Model scope 

The model runs from 2005 through 2050 using an annual time step. 
The main structure relies on a single national region for the United 
States, though the building sector includes detail at the level of U.S. 
Census regions. The model treats world oil prices as exogenous, with 
explicit treatment of the large uncertainty. SEDS is composed of 13 
modules addressing the major drivers of national energy consumption 
(Fig. 2). Experts in relevant segments of the energy economy developed 
each of the key modules, and renewable energy is represented as both 
entire modules (e.g., Biofuels module) and within modules (e.g., pho
tovoltaics providing energy in the Electricity module). 

Several modules use forecast scenarios generated by preexisting 
deterministic models. For instance, the Macroeconomics, Oil, and Coal 
modules rely on multiple forecast scenarios from the U.S. Energy In
formation Administration’s National Energy Modeling System [79]. The 
Natural Gas module employs forecast price and supply scenarios from a 
Market Allocation Model [80] analysis performed for DOE Government 
Performance Results Act (GPRA) benefits analysis. The Biomass module 
is based on forecasts from the University of Tennessee’s Policy Analysis 
System model [81]. Most modules incorporate time-changing and 
scenario-dependent price and supply curves to ensure robust responses 

Table 3 
Uncertain variables in SEDS classified by overarching categories of technology, 
policy, macroeconomics, and energy supply and price.  

Technology Policy Energy supply and 
price  

• Cost  • Corn and cellulosic 
ethanol subsidies  

• Alaska gas pipeline 
opening date  

• Performance  • Carbon policy (tax or 
cap)  

• Alaska and Gulf of 
Mexico gas 
hydrates supply  

• Learning rate  • Renewable fuel 
standards  

• Shale gas supply  

• Geothermal resource 
supply  

• Electricity renewable 
portfolio standards  

• World oil supply 
shocks  

• Hydrogen distribution 
cost  

• Production and 
investment tax credit 
expiration years  

• OPEC actions  

• Carbon separation rate 
from power plant flue 
gases  

• Nuclear waste disposal 
policy  

• U.S. oil supply 
growth rate 

Macroeconomics  • National building codes 
impacting energy 
intensity  

• World oil price  

• Gross domestic product  • National policy 
impacting building 
floor space  

• Coal price and 
supply  

• Manufacturing output  • Coal-to-liquids 
supply  • Interest rate  

• Population  
• Disposable personal 

income  
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to SEDS’ endogenous energy demands. The remaining modules use a 
bottom-up approach to calculate energy price, supply, or demand. 

4.4. Modeling software platform 

After building a limited spreadsheet prototype, NREL reviewed 
software platforms for model development. The review resulted in the 
selection of the Analytica [82] platform as best able to meet SEDS’ 
functional requirements, including integrated Monte Carlo uncertainty 
analysis, flexible and efficient handling of multidimensional arrays, vi
sual diagrams to document model structure, and system dynamics 
modeling. (Additional information on Analytica can be found in the 
Supplementary Information.) 

SEDS is organized as a hierarchy of modules, each depicting vari
ables and submodules as an influence diagram. Fig. 3 shows an influence 
diagram to depict relationships among variables for the electric sector 
operating costs. These diagrams, along with internal self-documentation 
for each variable, also shown, give easy access to the underlying algo
rithms. This transparency was developed to help alleviate the “black 
box” concerns of stakeholders. 

4.5. System dynamics framework 

SEDS uses a system dynamics framework with stocks, flows, and 
feedback loops [83]. For example, the stock of electric power plants of 
each type changes each time period as a result of the flow of retirements 
of old plants and building of new generation. The feedback loop from 
costs to consumer choice models a “virtuous cycle” in which lower costs 
for photovoltaics, for example, increase demand, which in turn moves 
the technology more rapidly down the learning curve. 

There are several reasons the SEDS team chose a system dynamics 
framework instead of a linear optimization or a general equilibrium 
framework, which are often used in other energy-economic models. A 
key reason was computational simplicity, which is essential for a sto
chastic model performing hundreds of Monte Carlo simulations and for 
exploring many scenarios each with a full simulation. In the most recent 
version of SEDS, a single deterministic run on a conventional desktop 
computer (2.2 GHz processor) took a few seconds, and a Monte Carlo 
simulation with 100 random samples took a few minutes. It is, therefore, 
practical to perform and compare dozens of probabilistic scenarios. A 
second reason for a system dynamics framework is the traceability of 
cause and effect within the model logic. The team’s goal was to develop 
a model formulation that represents the market dynamics in a way that 
is easily interpreted by reviewers and avoids the hidden behaviors and 

Fig. 1. Illustrative efficient frontier of portfolio scores looking at mean score versus score standard deviation.  

Fig. 2. Major SEDS modules categorized by macroeconomics, primary energy, converted energy, and end uses.  
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implicit relations inherent in optimization or equilibrium formulations. 
Third, the stock-and-flow framework is well-suited for bottom-up 
modeling of plant, equipment, and vehicle stocks tracked in the Con
verted Energy and End Use modules. The system dynamics framework 
efficiently computes and tracks stocks over time, including additions 
and retirements, while also capturing age-dependent characteristics of 
the stocks, which is difficult or impossible to do in alternative 
frameworks. 

A system dynamics framework poses some challenges. It is harder to 
impose strict constraints like a carbon cap or some supply limitations. 
Therefore, SEDS relies on shadow prices to push the model to meet a 
carbon cap. The SEDS team found that using proportional-integral 
control algorithms worked well at goal-seeking and equilibrium- 
seeking via shadow prices. Using smaller time steps would lead to 
shadow prices with more accuracy in achieving their desired goals. 

4.6. Technology market share and adoption 

SEDS uses a multinomial logit model to estimate market share among 
competitive energy technologies. (For a full list of technologies consid
ered in SEDS, see the Supplementary Information.) Technology choice is 
driven by the perceived utility of each energy technology to the con
sumer (purchaser) when selecting from competing technologies. A 
collection of attributes characterizes each technology. Attributes always 
include cost and usually non-cost attributes. For example, attributes of 
light-duty vehicles include capital, fuel, and maintenance costs, which 
determine total cost of ownership. Additional attributes include accel
eration, range, luggage space, home refueling, and so on, which affect 
consumer appeal. The utility of each technology (i.e., its relative desir
ability or value to the purchaser) is modeled as a weighted sum of its 
attribute values (Equation (1)). 

Utilitytech =
∑

attrib

(
Weightattrib × AttributeValuetech,attrib

)
+Preferencetech (1) 

Where 
AttributeValuetech,attrib = the value of each attribute corresponding to a 

given technology5 

Weightattrib = the weight or importance of each attribute to the utility 
Preferencetech = purchaser preference for each technology based on 

attributes other than those modeled explicitly, such as familiarity with a 
technology, environmental friendliness, perceptions of being “cutting- 
edge”, and other preferences unlikely to be captured by cost and per
formance attributes. 

The logit model estimates market share of each technology based on 
its utility relative to the other technologies (Equation (2)): 

MarketSharetech =
Exp(Sensitivity × Utilitytech)

∑
techExp(Sensitivity × Utilitytech)

(2) 

Where Sensitivitydefines how sensitive purchasers’ choices are to the 
modeled utilities. 

Attribute values vary considerably for a given technology because of 
regional differences and market imperfections. Consider photovoltaics: 
the levelized cost of energy varies considerably because of differences in 

Fig. 3. Influence diagram for the electric sector’s operating costs.  

5 In the electric sector’s formulation, electrical generating technologies’ key 
attribute is levelized cost of energy, which is a function of capital cost, oper
ating cost, fuel efficiency, utilization factor, and financing structure. An update 
might include electric generator attributes such as ramping rates, ability to 
provide various ancillary services, such as contributions to reserve re
quirements, and other critical aspects of the investment decision; and the model 
itself should be able to evaluate effective load carrying capabilities and other 
factors. 
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regional insolation, technology performance, supplier prices, developer 
costs, and operation and maintenance. Decision makers also vary in the 
importance they assign to each attribute (expressed by the Weights) and 
their view of each technology (expressed by the Preference parameter). 
The Sensitivity parameter (often designated as alpha in the literature) 
provides a simple and effective way to model this variability by con
trolling the degree to which market share goes to the apparent “best” 
(highest utility) technology versus competing technologies. A high 
Sensitivity value means most market share goes to the technology with 
highest utility. A low value results in market share being more spread 
out among technologies that are close to the “best.” The simple way in 
which this parameter models variability and spreads the market share is 
a key advantage of using logit models over other optimization methods, 
especially linear programming, which suffer from the “knife-edge” 
problem: they allocate all market share to the single “best” technology 
and swing suddenly to other technologies due to small changes in 
relative utility. 

We calibrated the logit parameters (Weights, Preference, and Sensi
tivity) to fit historical market share among technologies using a combi
nation of regression, sensitivity analysis, and nonlinear optimization to 
fit historical market shares, technology characteristics, and market 
conditions with some expert judgment for new technologies. Where 
appropriate, SEDS employs nested logit models. For instance, competi
tion for light-duty vehicles occurs in two stages. The first stage estimates 
market share among general technology groups (e.g., internal combus
tion engine, battery electric, or hydrogen fuel cells). The second stage 
estimates market share within each group (e.g., gasoline, diesel, hybrid, 
biofuels within the internal combustion engine group). This nested logit 
scheme reduces the problem of independence from irrelevant alterna
tives (the Red-Bus/Blue-Bus Problem) common to single-level logit 
formulations. 

Even logit models can produce rapid changes in technology adoption 
rates as a new technology becomes less costly. Sudden changes may be 
unrealistic because of limits in how rapidly the manufacturing, raw 
material supply, and infrastructure can respond to dramatic growth in 
demand (e.g., limited feedstock supply for biofuels or manufacturing 
capacity for photovoltaics or batteries). Temporary shortages may lead 
to price increases. In such situations, SEDS imposes constraints on rates 
of capacity growth or uses an iterative process to modify the logit allo
cation to reach an equilibrium market share. 

4.7. Modeling consumer expectations 

Many technologies, such as power plants, have lifetimes of decades. 
An ideal consumer (purchaser) selects a technology based on total pre
sent value or levelized cost of ownership over the lifetime in comparison 
with competing technologies. Thus, technology choice is based not just 
on the current situation but expectations about the future, including 
uncertain future fuel costs, which may be subject to policy changes such 
as emission permits or carbon prices for fossil fuels. Some economic 
models use “perfect foresight” to model these expectations and drive 
technology choice. SEDS models consumer expectations for fuel and 
other operating costs based on simple extrapolation from the last few 
years before the date when the choice is made and extrapolating recent 
fuel and operating costs for the length of each competing technology’s 
investment term. This method, which is often used in systems dynamics 
models of market choice, could be seen as what is known as myopic 
expectation. However, there is good evidence that individual consum
ers—if they look at total cost of ownership at all—focus on current costs 
of fuel and maintenance and do not consider much future change beyond 
recent trends. Even large and sophisticated companies usually use 
straightforward forecasts of future costs using simple extrapolation. It 
seems likely that these “myopic” models of consumer foresight better 
represent actual decision-making than models assuming perfect 
foresight. 

5. Effectively communicating the value of stochastic portfolio 
analysis 

Providing insight into the probability of meeting DOE technology 
goals, exploring the uncertain benefits of various energy R&D portfolios, 
and estimating the risks of funding decisions are key capabilities that the 
SEDS team aspired to provide decision makers. At the time of SEDS 
development, probabilistic analysis of DOE R&D portfolios was un
common, and there was little experience with how best to communicate 
the results and methodology in an insightful and understandable way. 
This section highlights helpful communication approaches and ad
dresses expected concerns, such as programs facing additional chal
lenges in an often-complicated funding and operational environment. 

Communicating model results to a broad audience of stakeholders is 
often difficult, especially considering the heterogenous nature of their 
backgrounds and their uses for the results. This diversity of stakeholders, 
especially inherent in the myriad energy industries, can lead to misin
terpretation of the results or overconfidence in results without fully 
understanding their nuances. When dealing with stochastic results, the 
richness of results multiplies these challenges. Ultimately, the goal is to 
relay the uncertainty of an outcome while balancing stakeholders’ needs 
to interpret the results and to make decisions based on them. 

During initial demonstrations of SEDS’ results (Fig. 4), the SEDS 
team provided primers on interpreting statistical charts to facilitate a 
common understanding of the results to DOE and other stakeholders 
interested in stochastic modeling. Routine questions from these audi
ences made it apparent that the necessary statistical background often 
could not be adequately conveyed using just a short primer. Moreover, 
the team found that time spent explaining how to interpret advanced 
statistical plots took time away from the goal of communicating key 
insights from the model. 

The display of SEDS results evolved to more succinct and easily 
interpreted formats that required less explanation and freed time for 
presenting key takeaways from results. The SEDS team found box plots 
or box-and-whisker plots to be intuitive and effective methods for 
comparing uncertainties among multiple single-point-in-time results 
[84]. One shortcoming of box plots—and the other plots described 
below—are their inability to call attention to multimodal distributions. 
In such situations, one should consider adding a note to highlight such 
distributions. For demonstrating a small number of time-changing re
sults, the team favored percentile bands and fan charts. However, these 
approaches also have drawbacks. For example, to avoid providing a 
detailed description of the meaning of percentiles and to prevent clutter 
within a graph, it is often necessary to limit the percentile bands to 
median (50th percentile) and lower and upper uncertainty ranges (e.g., 
5th and 95th percentiles). Moreover, there are limits to the number of 
time-series one can display using percentile bands and fan charts. The 
requirement that each time-series include at least three percentile bands 
quickly leads to a tangled and unreadable graph, and fan charts are only 
comprehensible when their color shading overlaps minimally. 

To compare many probabilistic time-series results in a single plot, the 
SEDS team preferred using frames of box plots, as depicted in Fig. 5. 
Each frame represents a single point in time, and a collection of frames 
displays the uncertain results at successive points in time, often sepa
rated by a time interval of multiple years. Though this method loses 
some time granularity, it conveys much time-dependent information in 
an understandable format. Additionally, this approach was helpful for 
comparing collections of results among multiple scenarios. 

Though it is important that a model’s methodology and highly 
technical details be understood and validated through continuous re
view processes, that information can easily become a distraction when 
communicating the insights to decision makers. Given the novelty of the 
modeling approach, the SEDS team initially felt compelled to provide 
audiences with a brief overview of the methodological framework and a 
summary of key insights. In hindsight, it might have been more effective 
to reserve technical details and jargon to audiences charged with 
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Fig. 4. Example of four ways uncertainty was initially visualized using SEDS, including cost trajectories drawn from probability distribution, probability density 
function, probability bands or percentiles, and box plots. 

Fig. 5. Illustrative year-dependent frames of box plots, detailing the relationship between technology and cumulative consumer savings.  
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scrutinizing the approach and to instead focus only on key insights from 
the approach when presenting to other audiences. The most successful 
strategy for communicating to decision makers likely involves relaying a 
compelling explanation founded on key model insights, focusing on the 
results of greatest consequence, and avoiding losing some of the audi
ence in technical details. 

6. Summary of lessons learned 

Development of the Stochastic Energy Deployment System model 
constituted a large effort within a short period of time, with many les
sons learned. The lessons span topics including model architecture, 
collaboration across institutions, communication of results, and system 
boundaries, to name a few. As mentioned in Section 4, there were many 
challenging model architecture decisions and takeaways. First, the 
Stochastic Energy Deployment System model would benefit from a 
variable time step allowing shorter near-term time steps and longer time 
steps for distant future time periods. Applying shorter time steps to near- 
term forecast periods would reduce challenges addressing fast-changing 
market dynamics, closer supply-demand equilibrium for supply- 
constrained energy types, and goal-seeking routines like estimating 
carbon prices to achieve a given carbon dioxide emissions level. 
Conversely, longer time steps would be more computationally efficient 
for highly uncertain forecasts 20 or more years into the future. 

Second, the Stochastic Energy Deployment System model would 
benefit from more global feedback to better represent the international 
energy system. For simplicity, the model includes few endogenous var
iables related to global markets. The Stochastic Energy Deployment 
System team recognized additional global representation as a longer- 
term goal, particularly as it relates to modeling technology learning 
rates as a function of cumulative global installations. 

Third, in the electric sector’s original formulation, electrical gener
ating technologies’ key attribute is levelized cost of energy, which is a 
function of capital cost, operating cost, fuel efficiency, utilization factor, 
and financing structure. However, there is a need to go beyond levelized 
cost of energy—for example, to capture the broader range of benefits of 
technologies contributing to the portfolio and providing synergies across 
each other in operations (e.g., solar photovoltaics during the day and 
wind at night, electric vehicle charging linked with renewable power 
availability, and managed electric vehicle charging to assist grid sta
bility). A current revision of the Stochastic Energy Deployment System 
model should include electric generator attributes such as the ability to 
provide reliability services (e.g., operating reserve) and other ancillary 
services, a generator’s effective load carrying capabilities, and other 
critical aspects of the investment decision. 

Using a system dynamics framework enabled rapid computation and 
use as an interactive tool, but also posed two noteworthy challenges and 
limitations. First, imposing strict constraints like a carbon cap or 
definitive supply limitations is difficult. So, the model relies on shadow 
prices to push the model in the desired direction. The Stochastic Energy 
Deployment System model team found that using proportional-integral 
control algorithms worked reasonably well at goal-seeking and 
equilibrium-seeking via shadow prices. As mentioned previously, using 
smaller time steps would lead to shadow prices with more accuracy in 
achieving their desired goals. Second, simultaneously addressing mul
tiple objectives is more difficult in the system dynamics framework. For 
example, cost-effectively building electric generating capacity to 
simultaneously meet power and capacity requirements is more chal
lenging than it would be in a linear optimization model, yet the team 
developed methods to overcome these challenges. 

The development process for the Stochastic Energy Deployment 
System model depended on effective communication among developers. 
Using the same templates across all modules for similar concepts was 
very helpful for quality checking the entire model. However, having 
developers across multiple institutions meant also competing with 
alternative work priorities at a larger scale, which was sometimes 

challenging but was mostly met by determined efforts by the various 
teams. 

Designing tools that emphasize the impacts of research and devel
opment within an entire energy system—rather than in just a single 
segment of the system—is inherently more complex because a broader 
view may imply competition or complementarity within and across 
sectors. It is important to consider a wide array of services provided by a 
technology and to avoid limiting the technology’s characterization to a 
subset of attributes. For example, using only generator levelized cost of 
energy for the electricity sector oversimplifies competition between 
electric technologies; more complete models would recognize the role of 
different technologies in providing various ancillary services and other 
important roles beyond levelized cost of energy. Similarly, a cross-sector 
perspective may indicate competition or synergies between improving 
electric end-use technologies (e.g., lighting and pumping) and 
improving electric generation technology. 

Though the Stochastic Energy Deployment System model was still in 
the development phase, it was generally well-received during reviews by 
the U.S. Department of Energy program analysts. Presenters of sto
chastic modeling insights can trial the methods highlighted in Section 5 
to more effectively convey the insights from and the dynamics within 
system models. Communicating nonlinear concepts can be difficult. The 
typical visual tools in Fig. 5 can be extended to include stochastic tor
nado diagrams, waterfall charts, and other visualizations that help 
communicate risk and uncertainty in a technology and in a portfolio 
analysis. 

Going forward, work is underway to advance stochastic multi- 
objective optimization tools to evaluate the risk and uncertainty of en
ergy R&D investments at the technology level. An open-source on-line 
tool for expert elicitation is in the final stages of development, building 
on the NearZero platform [85]. Work is now beginning to extend this 
technology-level analysis to the portfolio level, building on the lessons 
learned and experience with SEDS [86]. 

In this article, we have covered the structure of the Stochastic Energy 
Deployment System model, literature relevant to portfolio analysis, and 
lessons learned through the Stochastic Energy Deployment System 
model development and communication of stochastic results. We hope 
the article serves as a useful background for those who use and advance 
the model and as a reference for the community of practitioners who are 
continuously advancing the science of portfolio analysis with 
uncertainty. 
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