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Abstract: An important supply chain research problem is the bullwhip effect: demand 

fluctuations increase as one moves up the supply chain from retailer to manufacturer. 

It has been recognized that demand forecasting and ordering policies are two of the 

key causes of the bullwhip effect. In this paper we present a spreadsheet application, 

which explores a series of replenishment policies and forecasting techniques under 

different demand patterns. It illustrates how tuning the parameters of the 

replenishment policy induces or reduces the bullwhip effect. Moreover, we 

demonstrate how bullwhip reduction (order variability dampening) may have an 

adverse impact on inventory holdings. Indeed, order smoothing may increase 

inventory fluctuations resulting in poorer customer service. As such, the spreadsheets 

can be used as an educational tool to gain a clear insight into the use or abuse of 

inventory control policies and improper forecasting in relation to the bullwhip effect 

and customer service. 
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1 Introduction: teaching the bullwhip problem 

The bullwhip effect is a well-known phenomenon in supply chain management. In a 

single-item two-echelon supply chain, it means that the variability of the orders 

received by the manufacturer is greater than the demand variability observed by the 

retailer. This phenomenon was first popularised by Jay Forrester (1958), who did not 

coin the term bullwhip, but used industrial dynamic approaches to demonstrate the 

amplification in demand variance. At that time, Forrester referred to this phenomenon 

as “Demand Amplification”. Forrester's work has inspired many researchers to 

quantify the bullwhip effect, to identify possible causes and consequences, and to 

suggest various countermeasures to tame or reduce the bullwhip effect. 

 

A number of researchers designed games to illustrate the bullwhip effect. The most 

famous game is the “Beer Distribution Game”. This game has a rich history: growing 

out of the industrial dynamics work of Forrester and others at MIT, it is later on 

developed by Sterman in 1989. The Beer Game is by far the most popular simulation 

and the most widely used game in many business schools, supply chain electives and 

executive seminars. Simchi-Levi et al. (1998) developed a computerized version of 

the beer game, and several versions of the beer game are nowadays available, ranging 

from manual to computerized and even web-based versions (e.g. Machuca and 

Barajas 1997, Chen and Samroengraja 2000, Jacobs 2000). 

 

Beyond the games, real cases are used as teaching tools to introduce and to address 

the bullwhip effect (Lee et al 2004). The case study Barilla SpA (Hammond 1994), a 

major pasta producer in Italy, provides vivid illustrations of issues concerning the 

bullwhip effect. For a long time, Barilla offered special price discounts to customers 

who ordered full truckload quantities. Such marketing deals created customer order 

patterns that were highly spiky and erratic. The supply chain costs were so high that 

they outstripped the benefits from full truckload transportation. The Barilla case was 

one of the first published cases that supported empirically the bullwhip phenomenon.  

 

Campbell Soup’s chicken noodle soup experience (Cachon and Fisher 1997) is 

another example. Campbell Soup sells products whose customer demand is fairly 

stable; the consumption doesn’t swing wildly from week to week. Yet the 
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manufacturer faced extremely variable demand on the factory level. After some 

investigation, they found that the wide swings in demand were caused by the ordering 

practices of retailers. The swing was induced by forward buying. More recent 

teaching cases that address the bullwhip effect include Kuper and Branvold (2000), 

Hoyt (2001) and Peleg (2003). 

 

The objective of this paper is to present a spreadsheet application that can be used for 

educational purposes to illustrate the impact of the replenishment policy and the 

forecasting technique on the bullwhip effect. It has been recognized that demand 

forecasting and the type of ordering policy used are among two of the key causes of 

the bullwhip effect (Lee et al. 1997a). Lee et al. (1997b) provide a mathematical proof 

that variance amplification takes place when the retailer adjusts his ordering decision 

based on demand signals. Dejonckheere et al. (2003) demonstrate that the use of 

“non-optimal” forecasting schemes, such as the exponential smoothing and moving 

average forecast, always lead to bullwhip, independent of the observed demand 

pattern. As such, there has been an increasing number of studies devoted to the 

adverse effects of demand signaling, improper forecasting and the replenishment rule 

used (e.g. Watson and Zheng 2002). 

 

In this paper we explore a series of replenishment rules (standard and generalized 

order-up-to policies) and forecasting methods confronted with different demand 

processes (identically and independently distributed demand and autoregressive 

demand processes). What often appears to be a rational policy of the decision maker 

creates tremendous order amplification. We compare our simulation results with the 

analytical results available in the literature. The spreadsheets are designed in 

Microsoft Excel so they are user-friendly and easy to understand.  

 

The remainder of this paper is organized as follows. In the next section we present our 

spreadsheet model. Section 3 analyses the impact of the standard order-up-to policy 

with different forecasting techniques on the bullwhip effect. Section 4 describes a 

generalized order-up-to policy which is able to dampen the order variability for any 

demand process, and we discuss its impact on customer service. Finally we 

summarize our findings in section 5. 
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2 Description of spreadsheet model 

Our model follows the standard setup of the Beer Distribution Game (Sterman 1989). 

Each period, we have the following sequence of events: (1) incoming shipments from 

the upstream decision-maker are received and placed in inventory, (2) incoming 

orders (demand) are received from the downstream decision-maker and either filled 

(if inventory is available) or backlogged, and (3) a new order is placed and passed to 

the upstream echelon. The inventory position is reviewed every Rp periods. The 

physical lead time equals Tp periods. The total lead time (risk period) is then equal to 

L = Rp + Tp periods. We analyze inventory and order fluctuations for a single 

echelon. Extending the analysis to multiple echelons poses no problems. 

 

There are two basic types of inventory replenishment rules: continuous time, fixed 

order quantity systems on the one hand and periodic review systems on the other. 

Fixed order quantity systems result in the same quantity (or multiples thereof) of 

product being ordered at varying time intervals. In periodic systems, a variable 

amount of product is ordered at regular, repeating intervals. Given the common 

practice in retailing to replenish inventories frequently (e.g., daily) and the tendency 

of manufacturers to produce to demand, our spreadsheet application is based on a 

periodic review policy. Such a policy is optimal when there is no fixed ordering cost 

and both holding and shortage costs are proportional to the volume of on-hand 

inventory or shortage (Nahmias 1997, Zipkin 2000). 

 

In a standard periodic review order-up-to policy, the inventory position IPt is tracked 

at the end of every review period Rp and compared with an order-up-to (OUT) level 

St. IPt is the sum of the net stock NSt and the inventory on order WIPt. A positive net 

stock represents inventory on hand (items immediately available to meet demand), 

whereas a negative net stock refers to a backlog (demand that could not be fulfilled 

and still has to be delivered). The inventory on order is the work-in-process, or the 

items ordered but not yet arrived due to the physical lead time. A replenishment order 

is then placed to raise the inventory position to the order-up-to or base-stock level: 

 

Ot = St – IPt .         (1) 
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Analogous to the beer game setup, we assume the review period is one period (Rp = 

1), which implies that we place an order every period. The order-up-to level covers 

the (forecasted) average demand during the risk period and a safety stock to buffer 

higher than expected demands during the same risk period. We define lead time 

demand as the demand during the risk period L, or ∑
=

+=
L

1j
jt

L
t DD . 

 

In the next section we elaborate on this replenishment policy and define several 

techniques to forecast (lead time) demand. In the remainder of this section we focus 

on the structure of the spreadsheets. We define three parts: (1) the input section, 

where the user selects the parameters of the demand process, the replenishment policy 

and the forecasting method, (2) the simulation over time, where the user can track the 

calculations how orders are generated, and (3) the output section, where the key 

performance measures of the simulation are summarized, together with some 

illustrating graphs. The spreadsheets can be downloaded from  

http://www.econ.kuleuven.be/public/NDBAA78/BullwhipExplorer.xls  

 

2.1 Input section 

In the input section, the user defines the parameters of the customer demand process 

and the forecasting technique. The cells of the parameters that can be changed are 

shaded. We blocked the cells with automatic calculations in the spreadsheets in order 

to avoid mistakes and miscalculations. The protection can easily be removed using the 

Unprotect Sheet command (Tools menu, Protection submenu). 

 

We distinguish between an independent and identically distributed (IID) demand 

process and a first order autoregressive AR(1) demand (Box and Jenkins 1976). We 

define the demand process as follows: 

 

 ( ) t1tt εDDρDD +−+= − ,       (2) 

 

where Dt represents the demand in period t, D  is the average demand, ρ the 

autocorrelation coefficient and εt a normally distributed IID random error with mean 0 
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and variance σε². The demand variance equals )ρ/(1σσ 22
ε

2
D −= . When demand is IID, 

the autocorrelation coefficient ρ = 0. For – 1 < ρ < 0, the process is negatively 

correlated and exhibits period-to-period oscillatory behavior. For 0 < ρ < 1, the 

demand process is positively correlated which is reflected by a meandering sequence 

of observations. 

 

The user can select a transportation lag, or physical lead time Tp. This in turn 

determines the risk period L = Tp + 1 (assuming a one period review period), the 

average lead time demand, DL=DL , and the standard deviation of lead time 

demand, 2
DL Lσσ = . In fact, the average lead time demand has to be forecasted as 

t
L
t D̂LD̂ = ; tD̂  is the forecast of next period’s demand, made in period t, and can be 

determined in different ways, e.g., moving average, exponential smoothing, long term 

average, or minimum expected mean squared error. We discuss these methods further 

in this paper. Of course, the standard deviation of lead time demand Lσ̂  has to be 

estimated as well. In this paper, we assume however that Lσ  is known and constant. 

This assumption simplifies the analysis, although the assumption is not realistic. 

Extending the analysis to include an estimated forecast error can be done easily (see 

Chen et al. 2000). Furthermore, the user can input a safety factor z to define the safety 

stock as LzσSS=  (Silver et al. 1998). However, any other safety stock value can be 

chosen. In this paper we will not elaborate on the determination of the safety stock. 

The amount of safety stock may be based on the economic stock-out probability 

(when shortage cost is known), or a predetermined customer service level or fill rate. 

 

In order to evaluate the cost of the proposed policy, we input the following cost 

parameters: a holding cost Ch per unit per period, a backlog cost Cb per unit short, and 

a unit switching cost Csw for changing the production level per period. 

 

Next, the user can select a method to forecast customer demand. We distinguish five 

forecasting techniques: the mean demand forecast, the moving average forecast, the 

exponential smoothing forecast, the minimum mean squared error forecast and finally, 

demand signal processing. In the next section we discuss these forecasting techniques 

in detail. Once the forecast method is selected, the user can specify the parameters 
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corresponding to the forecast method, respectively Tm, α and χ (to be discussed in the 

following sections). 

 

2.2 Simulation 

By clicking the “SIMULATE” button, a simulation of 500 periods is generated. The 

structure of the simulation table follows the sequence of events discussed earlier in 

the paper. We provide a screenshot of some periods in Figure 1. Every period, the 

incoming shipments from the upstream supplier are first received and placed in 

inventory. Assuming that the supplier has ample stock, these shipments correspond to 

the order placed Tp + 1 periods ago (Tp periods transportation delay and 1 period 

ordering delay). Next, a random customer demand is observed and either fulfilled (if 

enough on hand inventory available) or placed in backlog (corresponding to a 

negative net stock).  

 

period receive demand NS WIP demand OUT- order inventory switching
forecast level costs costs

10 89 109 36 187 104,00 331,50 109 18,00 44,00
11 100 100 36 196 104,50 333,00 101 18,00 16,00
12 87 102 21 210 101,00 322,50 92 10,50 18,00
13 109 105 25 193 103,50 330,00 112 12,50 40,00
14 101 105 21 204 105,00 334,50 110 10,50 4,00
15 92 111 2 222 108,00 343,50 120 1,00 20,00
16 112 107 7 230 109,00 346,50 110 3,50 20,00  

Figure 1: Spreadsheet example of a standard OUT policy with Tp=2 

 

The resulting net stock in period t is then equal to the net stock in the previous period, 

plus that period’s receipt (equal to the order placed Tp + 1 periods ago), minus the 

observed customer demand. We also determine the number of items in the pipeline 

before an order is placed (WIP). The amount in the pipeline in the current period 

equals the pipeline amount of the previous period, plus the order placed at the end of 

the previous period, minus the order delivered this period.  Hence we obtain 

 

NSt = NSt-1 + Ot-(Tp+1) – Dt ,       (3) 

WIPt = WIPt-1 + Ot-1 – Ot-(Tp+1).      (4) 

 

At the end of the period, a new order is placed to raise the inventory position (sum of 

net stock and inventory on order) to the order-up-to (OUT) level St : 
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 Ot = St – ( NSt + WIPt ).       (5) 

 

Note that we provide the one-period ahead demand forecast as well. We need this 

number to calculate the OUT level. In the next section we discuss in more detail how 

to obtain this demand forecast and the OUT level. 

 

Finally, the costs per period are incurred. The inventory costs consist of a holding cost 

per unit in inventory (when net stock is positive) and a shortage cost per unit 

backlogged (negative net stock). The production switching costs are incurred for 

changing the level of production in a period. Assuming the production level is equal 

to the placed order quantity, the change in production is given by the difference in 

order quantity versus the previous period. 

 

 




<−⋅
≥⋅

=
0NS if  )NS(C

0NS if       NSC
C

tts

tthINV
t       (6) 

 1ttsw
SW
t OOCC −−⋅=        (7) 

 

2.3 Output section 

We define three types of performance measures of the simulation analysis: (1) the 

variance amplification ratios ‘bullwhip effect’ and ‘net stock amplification’, (2) the 

customer service measures ‘customer service level’ and ‘fill rate’ and (3) the average 

inventory and switching costs per period. 

 

We define the bullwhip effect as follows: 

 

 Bullwhip = 
demand of Variance

 orders of Variance
. 

 

A bullwhip measurement equal to one implies that the order variance is equal to the 

demand variance, or in other words, there is no variance amplification. A bullwhip 

measurement larger than one indicates that the bullwhip effect is present 
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(amplification), whereas a bullwhip measurement smaller than one is referred to as a 

“smoothing” scenario, meaning that the orders are smoothed (less variable) compared 

to the demand pattern (dampening). When we know the variance of demand (which 

we assumed), we can verify our simulation results with the analytic results available 

in the literature. This is also the reason why we focus on a single echelon in our 

model. In a multi-echelon environment, the demand pattern of the upstream echelon is 

given by the order pattern of its downstream partner. In general, however, we cannot 

determine the exact distribution of this order pattern, and therefore a comparative 

analysis with the analytic results available in the literature is hardly possible. 

 

Our focus is not only on the bullwhip measure. In this paper we also check the 

variance of the net stock since this has a significant impact on customer service (the 

higher the variance of net stock, the more safety stock required). Therefore we 

measure the amplification of the inventory variance, NSAmp, as: 

 

 NSAmp = 
demand of Variance

stock net  of Variance
. 

 

In case exact results for the bullwhip effect and net stock amplification are available 

in the literature, we provide them to compare with our simulated results. 

 

The inventory and switching costs are related to these variance amplification 

measures. A high bullwhip measure implies a wildly fluctuating order pattern, 

meaning that the production level has to change frequently, resulting in a higher 

average production switching cost per period. An increased inventory variance results 

in higher holding and backlog costs, inflating the average inventory cost per period.  

 

Finally, we provide the customer service level and fill rate resulting from the 

simulation analysis. The customer service level represents the probability that 

customer demand is met from stock, while the fill rate measures the proportion of 

demand that is immediately fulfilled from the inventory on hand. 

 

Additionally we created some graphs to illustrate the bullwhip effect and the net stock 

amplification. By clicking on the “GRAPHS” button the user can observe the 
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evolution of the simulated order pattern together with the observed demand pattern 

over time, and the simulated net stock evolution together with customer demand, both 

over a range of 50 and 500 periods. 

 

3 Impact of the standard order-up-to policy on the bullwhip effect 

In the previous section we introduced the standard order-up-to policy: we place an 

order equal to the deficit between the OUT level and the inventory position (Eq. (1)). 

The OUT level St covers the forecasted average lead time demand and a safety stock: 

 

 L
tt D̂S = +SS,        (8) 

 

with L
tD̂  the forecasted demand over L periods and SS the safety stock (either equal 

to Lzσ  or set to an arbitrary value). There are two methods to calculate the forecasted 

demand over the lead time LtD̂ . The first is one-period ahead forecasting and is 

estimated by forecasting the demand of one period ahead and multiplying it by the 

lead time, i.e., t
L
t D̂LD̂ = , where tD̂  represents the forecast of next period’s demand, 

made in period t. The second estimation method, called lead time demand forecasting, 

is calculated by taking the forecast of the sum of the demands over the lead time, 

∑
=

+=
L

1j
jt

L
t D̂D̂ , where jtD̂ +  represents the j-period-ahead forecast, made in period t. In 

the first construction, the lead time is explicitly multiplicative, whereas in the second, 

the lead time is implicitly additive (see Kim et al. 2006).  Unless stated otherwise, we 

assume one-period ahead forecasting in the remainder of this paper. 

 

There are several ways to forecast demand. We will now review a number of 

forecasting techniques and illustrate their impact on the bullwhip effect by means of 

our spreadsheet models. We advise the reader to download the bullwhip explorer at 

http://www.econ.kuleuven.be/public/NDBAA78/BullwhipExplorer.xls; it makes it 
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easier to follow the discussion below1. The analytical results available in the literature 

are summarized in the Appendix (for both bullwhip and net stock amplification). 

 

3.1 Mean demand forecasting 

The simplest forecast method is mean demand forecasting. If the decision maker 

knows that the demand is IID, then it is quite clear that the best possible forecast of all 

future demands is simply the long-term average demand, D . As a consequence, the 

forecasted lead time demand equals DLD̂L
t = , and the OUT level St given by Eq. (8) 

remains constant over time, so that Eq. (1) becomes 

 

 Ot = St – (St-1 – Dt) = Dt .       (9) 

 

We simply place an order equal to the observed demand. That is why this policy is 

called the “chase sales policy”. Consequently, in this setting, the variability of the 

replenishment orders is exactly the same as the variability of the original demand and 

the bullwhip effect does not exist. 

 

By selecting in the spreadsheet model the “mean demand forecasting” technique, the 

user can observe how the generated orders are equal to the demand, with a bullwhip 

measure equal to one as a result. Although we do not discuss in this section the net 

stock amplification, it is worthwhile to check that number as well. 

 

So why do we observe variance amplification in the real world? The answer is that 

decision makers do not know the demand (over the lead time) and consequently they 

forecast demand and constantly adjust the OUT levels. Suppose the demand is not 

characterized by an IID process, but rather a correlated or a non-stationary process, it 

is preferable to use the knowledge of the current demand to forecast next period’s 

demand. Because of the fact that the true underlying distribution of demand is not 

directly observed (only the actual demand values are observed) many inventory 

                                                
1 If macros are disabled because the security level is set too high, the security level should be lowered 

to Medium with the Tools menu, Macro – Security submenu, before reopening the document. 
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theory researchers suggest the use of adaptive inventory control mechanisms (see e.g., 

Treharne and Sox, 2002). Unfortunately, these adjustments create bullwhip.  

 

3.2 Demand signal processing 

Lee et al (1997a) introduce the term “demand signal processing”, which refers to the 

situation where decision makers use past demand information to update their demand 

forecast. As a result, the order-up-to level is not constant anymore, but it becomes 

adaptive. Suppose that the retailer experiences a surge of demand in one period. It 

will be interpreted as a signal of high future demand and the demand forecast will be 

adjusted and a larger order will be placed. Consequently the order-up-to level is 

adapted to 

 

 )Dχ(DSS 1tt1tt −− −+= ,       

 

resulting in the following order size: 

 

 )Dχ(DOO 1tt1tt −− −+= ,      (10) 

 

where χ is the signaling factor, a constant between zero and one. A value χ =1 implies 

that we fully adjust the order quantity by the increase (decrease) in demand from 

period to period.  

 

Cachon and Terwiesh (2006) offer an excellent explanation for this ordering policy. 

An increase in demand could signal that demand has shifted, suggesting the product’s 

actual expected demand is higher than previously thought. Then the retailer should 

increase his order quantity to cover additional future demand, otherwise he will 

quickly stock out. In other words, it is rational for a retailer to increase his order 

quantity when faced with an unusually high demand observation. These reactions by 

the retailer, however, contribute to the bullwhip effect. Suppose the retailer’s high 

demand observation occurred merely due to random fluctuation. As a result, future 

demand will not be higher than expected even though the retailer reacted to this 

information by ordering more inventory. Hence, the retailer will need to reduce future 
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orders so that the excess inventory just purchased can be drawn down. Ordering more 

than needed now and less than needed later implies the retailer’s orders are more 

volatile than the retailer’s demand, which is the bullwhip effect. 

 

Suppose we select “demand signal processing” in our spreadsheet (the “Define a 

demand forecasting technique” window), then we immediately observe demand 

amplification. If we set χ = 1, the bullwhip effect increases to a value around 5. If we 

anticipate to a lesser degree to the change of the demand, for example by setting χ = 

0.2, the bullwhip effect tempers to a value around 1.48. Observe that the switching 

costs also increase together with the bullwhip measure. 

 

3.3 Moving average forecast 

When the retailer does not know the true demand process, he can use simple methods 

to forecast demand, such as the moving average or exponential smoothing technique. 

This way future demand forecasts are continuously updated in face of new demand 

realizations. These estimates are then used to determine the order-up-to level (see Eq. 

(8)). Hence, adjusting the demand forecasts every period, the order-up-to level also 

becomes adaptive. 

 

The moving average forecast (MA) takes the average of the observed demand in the 

previous periods. The one-period ahead forecast is given by 

 

 m

1T

0i
i-tt /TDD̂ ∑

m











=

−

=

,       (11) 

 

with Tm the number of (historical) periods used in the forecast. The forecast of the 

lead time demand is obtained by multiplying the one-period ahead forecast by the lead 

time L, t
L
t D̂LD̂ = , which determines the OUT level in Eq. (8). 

 

By selecting the “moving average” forecasting technique in our spreadsheet models, 

we observe the impact of this forecast method on the order variability. Assuming an 

IID demand and a physical lead time of 2 periods, the bullwhip effect equals 3.63 for 
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Tm = 4 (if one period corresponds to a week, then we use the demand data of the past 

4 weeks or 1 month to compute the forecast). By using the data of 1 year or Tm=52, 

we obtain a much smaller bullwhip of 1.12 and we approach the chase sales policy. 

Indeed, the more data we use from the past, the closer our forecast will approach the 

average demand, and our results coincide with mean demand forecasting.  

 

The spreadsheets also allow us to illustrate the effect of the lead times on the bullwhip 

effect. Doubling the physical lead time to 4 periods for example, the bullwhip 

measure increases to 6.63 with Tm = 4. The same results hold for an AR demand. We 

find that there is always bullwhip for all values of ρ and L. Clearly there is one 

exception that will result in no bullwhip (BW=1), namely when we set ρ = 0 and 

Tm=∞. In that case the AR(1) demand simplifies to the IID demand and the forecast 

equals the average demand, resulting in the chase sales policy. 

 

3.4 Exponential smoothing forecast 

The exponential smoothing (ES) forecast is an adaptive algorithm in which the one-

period-ahead demand forecast is adjusted with a fraction of the forecasting error. Let 

α denote the smoothing factor, then the ES forecast of next period’s demand can be 

written as 

 

 ( )1tt1tt D̂DαD̂D̂ −− −+= .                (12) 

 

Analogously to the moving average forecasting method, we multiply the one-period 

ahead forecast by the lead time L to obtain a measure of the lead time demand 

forecast. 

 

We illustrate this forecasting method with our spreadsheets. When demand is IID and 

Tp=2, a smoothing factor α=0.4 generates a bullwhip measure of 5.20. We observe 

that an increase of α increases the bullwhip effect, since more weight is given to a 

single observation in the forecast. When α approaches zero (e.g. α = 0.001), we 

approximate the average demand as forecast. In that case the order-up-to level 

remains constant over time and hence there is no bullwhip effect (i.e. a bullwhip value 
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of one). Similar to the MA forecast, we observe that an increase in the lead time 

results in a higher bullwhip measure. 

 

3.5 Minimum Mean Squared Error forecast 

Finally we consider the minimum mean squared error (MSE) forecasting method. 

With this forecasting technique, the demand forecast is derived in such a way that the 

forecast error is minimized. The MSE forecast for the demand in period t + τ equals 

the conditional expectation of Dt+τ, given current and previous demand observations 

Dt, Dt-1, Dt-2,… (Box and Jenkins 1976). Doing so, we exploit the underlying nature of 

the demand pattern to predict future demand. As a consequence it seems logic to 

explicitly forecast the τ-period-ahead demand to predict lead time demand, instead of 

simply multiplying the one-period-ahead forecast with the lead time (as in the MA 

and ES forecasting technique). Let 1,2,... τ,D̂ τt =+ , be the τ-period-ahead forecast of 

demand Dt+τ made in period t. Then,  

 

( )DDρDD̂ t1t −+=+ ,       (13) 

( )DDρDD̂ t
τ

τt −+=+ .      (14) 

 

The lead time demand forecast is obtained by plugging the τ-period-ahead forecast 

into the definition of lead time demand, ∑ = += L

1i it
L
t D̂D̂ . Hence, in contrast to the MA 

and ES forecast methods, we do not multiply the one-period ahead forecast with the 

lead time, but instead calculate the forecast of the demand over the lead time horizon 

L. The MSE forecast for lead time demand is then given by 

 

( )DD
ρ1

ρρ
DLD̂ t

1L
L
t −

−
−+=

+

.      (15) 

 

Clearly, the MSE forecasting scheme is optimal when demand is an AR(1) process, as 

it explicitly takes the correlative demand structure into account, which is not the case 

in the non-optimal MA and ES techniques. It assumes, however, that the underlying 

parameters of the demand process are known or that an infinite number of demand 



 16 

data is available to estimate these parameters accurately. When demand is IID (ρ=0), 

the above equations reveal that the MSE forecast reduces to mean demand 

forecasting. Note however that in the spreadsheet, only the one-period ahead forecast 

is given and not the lead time demand forecast.  

 

We illustrate the impact of this forecasting method with our spreadsheets, and again 

assume Tp = 2. The results obtained are different from the previous results. When 

demand is negatively correlated, there is no bullwhip effect. When for instance ρ = –

0.5, we obtain a bullwhip measure of 0.30, meaning that the order variability is 

dampened compared to the customer demand, instead of being amplified. We refer to 

Alwan et al. (2003) for a theoretical justification. When ρ = 0.5, we obtain a bullwhip 

measure of 2.64, so that the bullwhip effect is present for positively correlated 

demand. Note that when ρ = 0, the demand process is IID and the MSE forecast boils 

down to the mean demand forecast, resulting in a bullwhip measure of one. 

Furthermore, we again observe that increasing the lead time results in a higher 

bullwhip measure.  

 

3.6 Insights 

We have contrasted five different forecasting methods to replenish inventory with the 

standard order-up-to policy for both IID and AR(1) demand. The findings indicate 

that different forecasting methods lead to different bullwhip measures. The bullwhip 

measure also varies according to the lead time and demand process. 

 

We conclude that, when we forecast a stationary demand based on its long term 

average and we keep the OUT level constant, there is no bullwhip effect. However, 

when we adapt the OUT level using a simple exponential smoothing, moving average 

or demand signal processing method, the standard order-up-to policy will always 

result in a bullwhip effect, independent of the demand process. The MSE forecasting 

technique is clearly the winner among the forecast methods, because it chases sales 

when demand is an IID process and it dampens the order variability when demand is 

negatively correlated. Moreover, it minimizes the variance of the forecasting error 

among all linear forecasting methods, and therefore it leads to the lowest inventory 
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costs. Nevertheless, this forecast method requires an elaborate study to discover the 

parameters of the demand process. 

 

We conclude that improper forecasting may have a devastating impact on the 

bullwhip effect. As a consequence, inventory and production switching costs may 

increase significantly. The spreadsheet application helps the decision maker to 

evaluate the impact of forecasting on the variability of the material flow. This 

observation puts forecasting in a totally different perspective. 

 

4 Impact of bullwhip reduction on customer service 

In the previous section we illustrated that the bullwhip effect may arise when using 

the standard order-up-to policy. In this section we introduce a generalized order-up-to 

policy that avoids variance amplification and succeeds in generating smooth ordering 

patterns, even when demand has to be forecasted. Smoothing models have a long 

tradition. The economic rationale of using smoothing replenishment (production) 

rules is quite obvious. A smoothing policy is justified when production (ordering) and 

inventory costs are convex (e.g. quadratic costs) or when there is a production 

switching cost. In such an environment it is preferable not to accept large deviations, 

instead some form of “averaging” is optimal. 

 

In this section we introduce a generalized order-up-to replenishment rule. We discuss 

the trade-off between bullwhip and customer service, present some win-win solutions 

that arise for some specific demand patterns and discuss the use of the generalized 

OUT policy when demand is forecasted using the ES or MA forecast technique. 

 

4.1 Generalized order-up-to policy 

We present a generalized order-up-to policy with the intention of dampening the order 

variability or smoothing the order pattern. Consider the standard order-up-to policy. 

Substituting Eq. (8) into Eq. (1) we obtain 
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    Ot
  = L

tD̂  + SS – IPt  = tD̂L  + SS – IPt  

         = tp D̂1)+(T  + SS – IPt  = tD̂  + [ tpD̂T  + SS – IPt],  (16) 

 

where tpD̂T  + SS can be seen as the desired inventory position DIP, which is the sum 

of the desired pipeline stock and desired net stock or safety stock. The difference 

between the desired and actual inventory position [DIP – IPt] is denoted as the 

inventory deficit. 

 

Introducing a proportional controller β for the inventory deficit, results in the 

following generalized order-up-to policy: 

 

 Ot
  = tD̂  + β · [DIP – IPt],      (17) 

 

with 0 < β < 2. Forrester (1961) refers to 1/β as the “adjustment time”. When β < 1 he 

explicitly acknowledges that the deficit recovery should be spread out over time, 

whereas β > 1 implies an overreaction to the inventory deficit. Hence, when β < 1, the 

inventory deficit is only partially recovered during the next ordering period. This 

fractional adjustment is second nature to control engineers. It is the reason why the 

decision rule given by Eq. (17) may generate a “smooth” ordering pattern.  

 

We developed a spreadsheet simulation of this generalized inventory policy2. The 

model is similar to the spreadsheet simulation of the standard OUT policy, but with a 

few important modifications. Additionally we input a value for the smoothing 

parameter β (since the control engineer literature prefers to use the inverse of β, 

namely Ti = 1/β, we also mention the Ti parameter in the input section). In Figure 2 

we illustrate the impact on the order pattern when we choose a value β = 0.5, demand 

is IID and forecasted with its long term average. The fractional controller indeed has a 

dampened or “peak-shaving” impact on the order pattern; the resulting bullwhip 

measure equals 0.33. 

 

                                                
2 This model can be found in a second worksheet of the same file. 
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Figure 2: Generated order pattern when β = 0.5 

 

 

4.2 Trade-off between bullwhip and inventory variance 

So far we have been concentrating on the variance of orders placed. This is, however, 

only one side of the coin. In developing a replenishment rule one has to consider the 

impact on the inventory variance as well, because that variance will have an 

immediate effect on customer service: the higher the variance, the more stock that will 

be needed to maintain customer service at the target level. We therefore measure the 

net stock amplification (NSAmp), which equals the ratio of the inventory variance 

over the demand variance. Net stock variance (let alone variance amplification) is not 

a common supply chain measure, but we need it to calculate the fill rate, which is a 

popular customer service measure (see Disney et al. 2006). 

 

Hence, we take into consideration the two following factors: on the one hand, the 

bullwhip effect which is related to the order variability and the switching costs, and 

on the other hand the the net stock amplification which is related to investment in 

inventories and the customer service.  
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Intuitively, we expect smooth ordering patterns will result in higher inventory 

fluctuations and consequently in a poorer fill rate, and this is indeed the case. Suppose 

we assume an IID demand, mean demand forecasting and Tp=2. A chase sales 

strategy with β=1 results in an NSAmp value of 3. Smoothing with β=0.5 reduces the 

bullwhip measure to 0.33, and equivalently decrease switching costs. On the other 

hand, it increases the NSamp measure to 3.33, together with an increase in inventory 

costs. We are able to smooth the order pattern, but pay the price of higher inventory 

fluctuations and more inventory costs.  

 

These observations lead to a trade-off between bullwhip and customer service (as 

measured by net stock variance amplification). The question is to what extent 

production rates can be smoothed in order to minimize production adaptation costs, 

without adversely increasing our inventory costs too much (Disney and Towill 2003). 

Disney et al. (2004) show that when demand is IID and we forecast demand with its 

mean, then the sum of bullwhip and NSAmp is minimized at β = 0.618, which can be 

seen as “the best of both worlds” solution. This remarkable result is the “Golden 

Section”, also known as the Golden Mean, Golden Ratio or Divine Proportion. By 

adding up the bullwhip effect metric and the net stock amplification metric, we 

assume that both factors are equally important. It is clear that in the real world 

companies apply weights to the bullwhip related costs and customer service related 

costs. In this case the shape of the total cost curve may be different and the optimal 

smoothing parameter may no longer be “golden”. 

 

4.3 Win-win solutions for some demand patterns 

We demonstrated that bullwhip can be reduced by ordering a fraction of the inventory 

deficit, rather than recovering the entire deficit in one time period. When demand is 

IID, order smoothing comes at a price: in order to guarantee the same fill rate, more 

investment in safety stock is required due to an increased inventory variance. Disney 

et al. (2006) show that it is possible to actually achieve bullwhip and inventory 

reduction together whilst maintaining customer service. This is a true win-win 

situation resulting from the generalized OUT policy. However, this cannot be 

achieved in all cases as it depends on the demand pattern. 
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Consider a stochastic demand pattern with auto regressive and moving average 

(ARMA) components of order one, i.e. ARMA (1,1), defined by: 

 

 ( ) ( ) 1tt1tt εδ1εDDρDD −− −−+−+= ,    (18) 

 

which is similar to the AR process, given by Eq. (2), but additionally contains a 

moving average component with δ the moving average coefficient, 0 ≤ δ ≤ 2  (Box 

and Jenkins 1976). Then, depending on the specific values of ρ and δ, inventory 

variance can be reduced by smoothing the demand signal (β < 1), so that bullwhip can 

be removed whilst reducing net stock variance (when compared to the standard OUT 

policy). In other cases, however, lower inventory variability is achieved by over-

reacting to the ARMA signal (i.e., β > 1). If we then want to remove bullwhip in this 

situation, we are obliged to hold extra inventory. 

 

These situations can be illustrated with the spreadsheets. For instance, suppose that 

ρ=0.5, δ=1.8 and we forecast demand with its long term average (“mean demand 

forecasting”).  Then, a chase sales strategy (β=1) results in an NSAmp measure of 

6.73. A value of β = 1.8 increases the bullwhip measure to 1.33, but decreases the 

NSAmp to 5.5 (observe that smoothing with β = 0.5 decreases the bullwhip to 0.66, 

but increases NSAmp to 9.13). Hence, in this case lower inventory variability is 

achieved with bullwhip. When we consider another example where demand is 

characterized by ρ=0.25 and δ=0.25, then a chase sales strategy (β=1) results in an 

NSAmp of 1.46. Smoothing with β = 0.5 decreases the inventory variability to 1.15. 

Inventory variance is in this case reduced by smoothing the demand signal, which is a 

win-win solution. We refer to Disney et al. (2006) for a detailed analysis of potential 

win-win scenarios. 

 

4.4 The generalized order-up-to policy with demand forecasting 

We have to be cautious with the results described above. The smoothing rule 

described by Eq. (17) indeed provides the opportunity to dampen the variability in 

orders compared to the demand pattern. When an IID demand is forecasted with its 

long term average, Disney et al. (2006) show that the bullwhip measure is equal to 
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β/(2–β). Hence, for 0 < β < 1 we generate a smooth replenishment pattern (dampening 

order variability) and for 1 < β < 2 we create bullwhip (variance amplification). 

However, when the smoothing rule is applied and demand is forecasted with e.g. the 

moving average or exponential smoothing technique, the results are much more 

complicated. For instance, when demand is IID and forecasted with exponential 

smoothing and a smoothing parameter α = 0.5, then a value β = 0.5 results in a 

bullwhip measure equal to 2.41. Hence the bullwhip effect is present, although the 

feedback parameter β is smaller than one. We should reduce β down to 0.2 in order to 

obtain a smooth order pattern with a bullwhip measure smaller than one when using 

this particular forecast method. In other words, improper use of forecasting techniques 

may destroy the smoothing effect of the generalized order-up-to policy. 

 

The analytic formulas for bullwhip and NSAmp for the generalized OUT policy in the 

complete ARMA plane are very lengthy when we forecast using the ES technique. 

We refer to Disney et al. (2006) where these expressions are provided. For the 

purpose of this paper, we just mention that a feedback parameter β < 1 does not 

necessarily imply that the order variability is dampened when demand is forecasted 

with the MA or ES method. The decision maker can conduct several experiments with 

our spreadsheet model in order to obtain insights into this complicated issue. 

 

4.5 Insights 

When production is inflexible and significant costs are incurred by frequently 

switching production levels up and down, standard order-up-to policies with 

forecasting mechanisms may no longer be desirable. Because of the huge expenses, it 

may be important to avoid variance amplification or even to reduce variability of 

customer demand. Therefore we introduced the generalized order-up-to decision rule 

that avoids variance amplification and succeeds in generating smooth ordering 

patterns, even when demand has to be forecasted. The crucial difference with the 

standard order-up-to policies is that the inventory deficit is only fractionally taken into 

account. In developing this generalized replenishment rule, we have emphasized on 

two aspects: the order variability (as measured by the bullwhip effect), and the impact 

on the variance of the net stock (as measured by the net stock amplification). These 

performance measures are related to production switching and inventory costs. 
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The insights are clearest when we forecast demand with its long term average. When 

demand is an IID process, bullwhip reduction comes at a price. In order to guarantee 

the same fill rate, a larger safety stock is required. The “best of both worlds” solution, 

minimizing the sum of bullwhip and net stock amplification, is to set β = 0.618, the 

“Golden Ratio”. For ARMA(1,1) demand patterns, it is possible to end up in four 

different scenarios when compared to the standard OUT policy: (1) win-win, we can 

remove bullwhip and reduce inventory; (2) win-lose, sometimes bullwhip can only be 

removed at the expense of holding extra inventory; (3) lose-win, sometimes bullwhip 

can be endured because it results in a policy that requires less inventory to be held; (4) 

lose-lose, sometimes excessive bullwhip and inventory may exist. These scenarios 

depend on the statistical properties of the demand process. 

 

When demand is forecasted using the exponential smoothing or moving average 

method, the results are much more complex. In that case, a feedback parameter β < 1 

does not necessarily imply that the order variability is dampened compared to the 

demand pattern. Using the spreadsheet application the decision maker can experiment 

with order smoothing and forecasting and as such, he/she can evaluate the impact of 

different replenishment strategies on the fluctuations in both the order and inventory 

pattern. 

 

5 Conclusions 

In this paper we present a spreadsheet application that can be used for educational 

purposes to gain a clear insight into the use or abuse of inventory control policies in 

relation to the bullwhip effect and customer service. It explores a series of 

replenishment policies and forecasting techniques under different demand processes, 

and illustrates how tuning the parameters of the replenishment policy and the 

forecasting technique result in the bullwhip effect. Moreover we demonstrate how 

bullwhip can be reduced, with an increase in inventory fluctuations and reduced 

customer service as a result. The spreadsheet models presented in this paper will 

guide the decision maker through a fairly complicated interplay between order 

fluctuations, inventory fluctuations and customer service in a variety of demand 

process scenarios and forecasting techniques. 
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Table 1: Exact formulas for the standard order-up-to policy. 

Table 2: Exact formulas for the generalized order-up-to policy.



 27

Table 1: Exact formulas for the standard order-up-to policy. Sources: (1) Dejonckheere et al. 2003, (2) Chen et al. 2000, (3) Hosoda 2005, (4) Zhang 2004 
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Table 2: Exact formulas for the generalized order-up-to policy. Source: Disney et al. 2006 
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