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Abstract: An important supply chain research problem istkihkbwhip effect: demand
fluctuations increase as one moves up the supg@indhom retailer to manufacturer.
It has been recognized that demand forecastingoetheting policies are two of the
key causes of the bullwhip effect. In this paperpuesent a spreadsheet application,
which explores a series of replenishment policied forecasting techniques under
different demand patterns. It illustrates how tgninhe parameters of the
replenishment policy induces or reduces the bupwlffect. Moreover, we
demonstrate how bullwhip reduction (order variagpildampening) may have an
adverse impact on inventory holdings. Indeed, orderoothing may increase
inventory fluctuations resulting in poorer custorservice. As such, the spreadsheets
can be used as an educational tool to gain a ohksaght into the use or abuse of
inventory control policies and improper forecastingelation to the bullwhip effect

and customer service.
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1 Introduction: teaching the bullwhip problem

The bullwhip effect is a well-known phenomenon upgly chain management. In a
single-item two-echelon supply chain, it means tthe variability of the orders
received by the manufacturer is greater than tmease variability observed by the
retailer. This phenomenon was first popularised#y Forrester (1958), who did not
coin the term bullwhip, but used industrial dynamjproaches to demonstrate the
amplification in demand variance. At that time, fiéster referred to this phenomenon
as “Demand Amplification”. Forrester's work has pmed many researchers to
guantify the bullwhip effect, to identify possib&uses and consequences, and to
suggest various countermeasuretatoe or reduce the bullwhip effect.

A number of researchers designed games to illestha bullwhip effect. The most
famous game is the “Beer Distribution Game”. Thasng has a rich history: growing
out of the industrial dynamics work of Forrestedasthers at MIT, it is later on
developed by Sterman in 1989. The Beer Game isubthe most popular simulation
and the most widely used game in many businest;supply chain electives and
executive seminars. Simchi-Levi et al. (1998) depetl a computerized version of
the beer game, and several versions of the beee gaennowadays available, ranging
from manual to computerized and even web-basediovers(e.g. Machuca and
Barajas 1997, Chen and Samroengraja 2000, Jac063.20

Beyond the games, real cases are used as teaobisgd introduce and to address
the bullwhip effect (Lee et al 2004). The case ytBdrilla SpA (Hammond 1994), a

major pasta producer in Italy, provides vivid ilizions of issues concerning the
bullwhip effect. For a long time, Barilla offere@exial price discounts to customers
who ordered full truckload quantities. Such mamgtdeals created customer order
patterns that were highly spiky and erratic. Thppby chain costs were so high that
they outstripped the benefits from full truckloadnsportation. The Barilla case was

one of the first published cases that supportedraralty the bullwhip phenomenon.

Campbell Soup’s chicken noodle soup experience H@acand Fisher 1997) is
another example. Campbell Soup sells products witaséomer demand is fairly

stable; the consumption doesn’t swing wildly fromeek to week. Yet the



manufacturer faced extremely variable demand onféotory level. After some
investigation, they found that the wide swings @mnd were caused by the ordering
practices of retailers. The swing was induced bgwéod buying. More recent
teaching cases that address the bullwhip effedtidecKuper and Branvold (2000),
Hoyt (2001) and Peleg (2003).

The objective of this paper is to present a spiesetsapplication that can be used for
educational purposes to illustrate the impact & thplenishment policy and the

forecasting technique on the bullwhip effect. lshHaeen recognized that demand
forecasting and the type of ordering policy usesl @nong two of the key causes of
the bullwhip effect (Lee et al. 1997a). Lee et(8897b) provide a mathematical proof
that variance amplification takes place when thailex adjusts his ordering decision
based on demand signals. Dejonckheere et al. (2083)onstrate that the use of
“non-optimal” forecasting schemes, such as the ea&ptial smoothing and moving

average forecast, always lead to bullwhip, indepenhdf the observed demand
pattern. As such, there has been an increasing euwibstudies devoted to the

adverse effects of demand signaling, improper fstieg and the replenishment rule
used (e.g. Watson and Zheng 2002).

In this paper we explore a series of replenishmel@s (standard and generalized
order-up-to policies) and forecasting methods amifd with different demand
processes (identically and independently distridbutkemand and autoregressive
demand processes). What often appears to be aahpolicy of the decision maker
creates tremendous order amplification. We comparesimulation results with the
analytical results available in the literature. Thpreadsheets are designed in

Microsoft Excel so they are user-friendly and e@synderstand.

The remainder of this paper is organized as folldwshe next section we present our
spreadsheet model. Section 3 analyses the impabedaftandard order-up-to policy
with different forecasting techniques on the bullvieffect. Section 4 describes a
generalized order-up-to policy which is able to gam the order variability for any
demand process, and we discuss its impact on cest@arvice. Finally we

summarize our findings in section 5.



2  Description of spreadsheet model

Our model follows the standard setup of the Besatribution Game (Sterman 1989).
Each period, we have the following sequence of svémh) incoming shipments from
the upstream decision-maker are received and platadventory, (2) incoming
orders (demand) are received from the downstrearisida-maker and either filled
(if inventory is available) or backlogged, and &hew order is placed and passed to
the upstream echelon. The inventory position iSenggd every Rp periods. The
physical lead time equals Tp periods. The total kae (risk period) is then equal to
L = Rp + Tp periods. We analyze inventory and orflectuations for a single

echelon. Extending the analysis to multiple echelooses no problems.

There are two basic types of inventory replenishmrales: continuous time, fixed
order quantity systems on the one hand and peri@liew systems on the other.
Fixed order quantity systems result in the samentifya(or multiples thereof) of
product being ordered at varying time intervals. p@riodic systems, a variable
amount of product is ordered at regular, repeatimgrvals. Given the common
practice in retailing to replenish inventories fueqtly (e.g., daily) and the tendency
of manufacturers to produce to demand, our spresdsipplication is based on a
periodic review policy. Such a policy is optimal evhthere is no fixed ordering cost
and both holding and shortage costs are propottiotmahe volume of on-hand
inventory or shortage (Nahmias 1997, Zipkin 2000).

In a standard periodic review order-up-to polide tnventory position |Hs tracked
at the end of every review period Rp and comparild an order-up-to (OUT) level
S. IP; is the sum of the net stock N&hd the inventory on order WIFA positive net
stock represents inventory on hand (items immelgiateailable to meet demand),
whereas a negative net stock refers to a backlem#dd that could not be fulfilled
and still has to be delivered). The inventory odeoris the work-in-process, or the
items ordered but not yet arrived due to the playdead time. A replenishment order

is then placed to raise the inventory positiorh arder-up-to or base-stock level:

O=S-1R. (1)



Analogous to the beer game setup, we assume tleweeriod is one period (Rp =
1), which implies that we place an order every gueriThe order-up-to level covers
the (forecasted) average demand during the riskogemnd a safety stock to buffer
higher than expected demands during the same Bsibd We definelead time

L
demand as the demand during the risk period LDdr = ZD

=1

t+j -

In the next section we elaborate on this repleneiinpolicy and define several
techniques to forecast (lead time) demand. In ¢éimeainder of this section we focus
on the structure of the spreadsheets. We defiree tparts: (1) the input section,
where the user selects the parameters of the depranéss, the replenishment policy
and the forecasting method, (2) the simulation ovee, where the user can track the
calculations how orders are generated, and (3)otltput section, where the key
performance measures of the simulation are sumawjritogether with some
illustrating graphs. The spreadsheets can be daasbbfrom
http://www.econ.kuleuven.be/public/NDBAA78/Bullwligplorer.xls

2.1 Input section

In the input section, the user defines the parametethe customer demand process
and the forecasting technique. The cells of therpaters that can be changed are
shaded. We blocked the cells with automatic catmria in the spreadsheets in order
to avoid mistakes and miscalculations. The pratectian easily be removed using the

Unprotect Sheet command (Tools menu, Protectiomsuh).
We distinguish between an independent and idehtichstributed (11ID) demand

process and a first order autoregressive AR(1) dentBox and Jenkins 1976). We
define the demand process as follows:

D, =D +p(D,, - D)+, 2)

where D represents the demand in periodD, is the average demang, the

autocorrelation coefficient arida normally distributed IID random error with me@&n



and variance.2. The demand variance equal$ = ¢2/(1-p?). When demand is 1D,

the autocorrelation coefficient = 0. For — 1 <p < 0, the process is negatively
correlated and exhibits period-to-period oscillgtérehavior. For 0 <p < 1, the
demand process is positively correlated which fleceed by a meandering sequence

of observations.

The user can select a transportation lag, or paysdead time Tp. This in turn

determines the risk period L = Tp + 1 (assumingna period review period), the
average lead time demand), =LD, and the standard deviation of lead time
demand,s, =,/Lo? . In fact, the average lead time demand has totecdsted as

If)tL = Llf)t; If)t is the forecast of next period’s demand, madeeniog t, and can be

determined in different ways, e.g., moving averagyg@onential smoothing, long term
average, or minimum expected mean squared errodi¥¢ess these methods further

in this paper. Of course, the standard deviatioteatl time demand, has to be
estimated as well. In this paper, we assume howdatis, is known and constant.

This assumption simplifies the analysis, althoubgk fissumption is not realistic.
Extending the analysis to include an estimatedctsterror can be done easily (see
Chen et al. 2000). Furthermore, the user can iapatfety factor z to define the safety
stock asSS=zs, (Silver et al. 1998). However, any other safetycktvalue can be

chosen. In this paper we will not elaborate ondbgermination of the safety stock.
The amount of safety stock may be based on theoetionstock-out probability

(when shortage cost is known), or a predeterminstboner service level or fill rate.

In order to evaluate the cost of the proposed pphee input the following cost
parameters: a holding cost @er unit per period, a backlog costger unit short, and

a unit switching cost & for changing the production level per period.

Next, the user can select a method to forecasbestdemand. We distinguish five
forecasting techniques: the mean demand foredestnbving average forecast, the
exponential smoothing forecast, the minimum mearaseg error forecast and finally,
demand signal processing. In the next section weuds these forecasting techniques

in detail. Once the forecast method is selectesl,uer can specify the parameters



corresponding to the forecast method, respectiVelya andy (to be discussed in the

following sections).

2.2  Simulation

By clicking the “SIMULATE” button, a simulation ds00 periods is generated. The
structure of the simulation table follows the setpeeof events discussed earlier in
the paper. We provide a screenshot of some penoésgure 1. Every period, the
incoming shipments from the upstream supplier argt feceived and placed in
inventory. Assuming that the supplier has amplekstthese shipments correspond to
the order placed Tp + 1 periods ago (Tp periodsspartation delay and 1 period
ordering delay). Next, a random customer demambserved and either fulfilled (if
enough on hand inventory available) or placed icklmy (corresponding to a
negative net stock).

period receive demand NS WIP demand OuUT- order inventory | switching

forecast level costs costs
10 89 109 36 187 104,00 331,50 109 18,00 44,00
11 100 100 36 196 104,50 333,00 101 18,00 16,00
12 87 102 21 210 101,00 322,50 92 10,50 18,00
13 109 105 25 193 103,50 330,00 112 12,50 40,00
14 101 105 21 204 105,00 334,50 110 10,50 4,00
15 92 111 2 222 108,00 343,50 120 1,00 20,00
16 112 107 7 230 109,00 346,50 110 3,50 20,00

Figure 1: Spreadsheet example of a standard OUT policy with Tp=2

The resulting net stock in period t is then eqaaht net stock in the previous period,
plus that period’s receipt (equal to the order @hdp + 1 periods ago), minus the
observed customer demand. We also determine thdetuai items in the pipeline
before an order is placed (WIP). The amount in ghgeline in the current period
equals the pipeline amount of the previous penhas the order placed at the end of

the previous period, minus the order delivered pleisod. Hence we obtain

NS = NS.1 + Oy — Dt 3)
WIP; = WIP.1 + Q.1 — O1p+1) (4)

At the end of the period, a new order is placedhise the inventory position (sum of
net stock and inventory on order) to the orderafauUT) level $:



G =8-(NS+WIR). ®)

Note that we provide thene-period ahead demand forecast as well. We need this
number to calculate the OUT level. In the nextisactive discuss in more detail how

to obtain this demand forecast and the OUT level.

Finally, the costs per period are incurred. Themury costs consist of a holding cost
per unit in inventory (when net stock is positive)d a shortage cost per unit
backlogged (negative net stock). The productiontcdwig costs are incurred for
changing the level of production in a period. Asswgrthe production level is equal
to the placed order quantity, the change in pradnds given by the difference in

order quantity versus the previous period.

w _ [ChINS, if NS, =0
= _ (6)

' C.[{-NS)) if NS, <0
CtSW = Csw []Dt - Ot—1| (7)

2.3 Output section

We define three types of performance measuresefstmulation analysis: (1) the
variance amplification ratios ‘bullwhip effect’ aridet stock amplification’, (2) the
customer service measures ‘customer service lawvel ‘fill rate’ and (3) the average

inventory and switching costs per period.

We define the bullwhip effect as follows:

Varianceof orders
Varianceof demani

Bullwhip =

A bullwhip measurement equal to one implies that@hder variance is equal to the
demand variance, or in other words, there is ntamae amplification. A bullwhip

measurement larger than one indicates that thewbigll effect is present



(amplification), whereas a bullwhip measurement smaller thanioneferred to as a

“smoothing” scenario, meaning that the orders areathed (less variable) compared
to the demand patteralgmpening). When we know the variance of demand (which
we assumed), we can verify our simulation resuith ¥he analytic results available

in the literature. This is also the reason why weué on a single echelon in our
model. In a multi-echelon environment, the demaaitigon of the upstream echelon is
given by the order pattern of its downstream partimegeneral, however, we cannot
determine the exact distribution of this order gt and therefore a comparative

analysis with the analytic results available in literature is hardly possible.

Our focus is not only on the bullwhip measure. tis tpaper we also check the
variance of the net stock since this has a sigmtiempact on customer service (the
higher the variance of net stock, the more safébgksrequired). Therefore we

measure the amplification of the inventory varigié8Amp, as:

_ Varianceof netstock

NSAmM .
P Varianceof demani

In case exact results for the bullwhip effect aetl stock amplification are available

in the literature, we provide them to compare weitin simulated results.

The inventory and switching costs are related teseh variance amplification
measures. A high bullwhip measure implies a wilfliyctuating order pattern,
meaning that the production level has to changqumstly, resulting in a higher
average production switching cost per period. Aaréased inventory variance results

in higher holding and backlog costs, inflating #werage inventory cost per period.

Finally, we provide the customer service level dild rate resulting from the
simulation analysis. The customer service levelraggnts the probability that
customer demand is met from stock, while the filer measures the proportion of

demand that is immediately fulfilled from the intery on hand.

Additionally we created some graphs to illustrae bullwhip effect and the net stock

amplification. By clicking on the “GRAPHS” buttorhé user can observe the



evolution of the simulated order pattern togethéhwhe observed demand pattern
over time, and the simulated net stock evolutigetber with customer demand, both

over a range of 50 and 500 periods.

3 Impact of the standard order-up-to policy on the bullwhip effect

In the previous section we introduced the stanaeddr-up-to policy: we place an
order equal to the deficit between the OUT level #re inventory position (Eqg. (1)).

The OUT level Scovers the forecasted average lead time demand aafity stock:
S, =D\ +SS, (8)

with f)tL the forecasted demand over L periods and SS fe¢ysstock (either equal

to zo, or setto an arbitrary value). There are two mésho calculate the forecasted
demand over the lead timéf. The first isone-period ahead forecasting and is
estimated by forecasting the demand of one perimhé and multiplying it by the
lead time, i.e.,If)tL = Lf)t, where If)t represents the forecast of next period’s demand,

made in period t. The second estimation methotkdbdad time demand forecasting,

is calculated by taking the forecast of the sunthef demands over the lead time,

~ L ~ ~
D, = ZDt+j , whereD .. represents the j-period-ahead forecast, maderiadpe In

=1

t+j

the first construction, the lead time is explicithultiplicative, whereas in the second,
the lead time is implicitly additive (see Kim et aD06). Unless stated otherwise, we

assume one-period ahead forecasting in the remaifidieis paper.

There are several ways to forecast demand. We nal review a number of
forecasting techniques and illustrate their impatthe bullwhip effect by means of
our spreadsheet models. We advise the reader taldagvthe bullwhip explorer at
http://www.econ.kuleuven.be/public/NDBAA78/Bullwtitgplorer.xls it makes it

10



easier to follow the discussion befbWhe analytical results available in the literatur

are summarized in the Appendix (for both bullwhifgaet stock amplification).

3.1 Mean demand forecasting

The simplest forecast method is mean demand fdiegadf the decision maker

knows that the demand is IID, then it is quite clkbat the best possible forecast of all
future demands is simply the long-term average deln® . As a consequence, the
forecasted lead time demand equéts: LD, and the OUT level Qjiven by Eq. (8)

remains constant over time, so that Eq. (1) becomes
G=8-(G1-D)=D. )

We simply place an order equal to the observed ddmahat is why this policy is
called the “chase sales policy”. Consequently,his setting, the variability of the
replenishment orders is exactly the same as thabitiy of the original demand and
the bullwhip effect does not exist.

By selecting in the spreadsheet model the “mearaddnfiorecasting” technique, the
user can observe how the generated orders are &qtied demand, with a bullwhip
measure equal to one as a result. Although we dalisouss in this section the net

stock amplification, it is worthwhile to check thaimber as well.

So why do we observe variance amplification in thal world? The answer is that
decision makers do not know the demand (over the {ene) and consequently they
forecast demand and constantly adjust the OUT dev@lippose the demand is not
characterized by an 11D process, but rather a ie@ or a non-stationary process, it
is preferable to use the knowledge of the curreamhahd to forecast next period’s
demand. Because of the fact that the true underlglistribution of demand is not

directly observed (only the actual demand values @vserved) many inventory

! If macros are disabled because the security Isv@t too high, the security level should be lader

to Medium with the Tools menu, Macro — Securityrseinu, before reopening the document.
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theory researchers suggest the use of adaptivationyecontrol mechanisms (see e.qg.,

Treharne and Sox, 2002). Unfortunately, these aujsts create bullwhip.

3.2 Demand signal processing

Lee et al (1997a) introduce the term “demand signatessing”, which refers to the
situation where decision makers use past demaodmattion to update their demand
forecast. As a result, the order-up-to level is oohstant anymore, but it becomes
adaptive. Suppose that the retailer experiences a surgiemiand in one period. It
will be interpreted as a signal of high future dashand the demand forecast will be
adjusted and a larger order will be placed. Consetiy the order-up-to level is

adapted to

St = St—l +X(Dt - Dt—1)v

resulting in the following order size:

O, =0, +x(D,-D,), (10)

wherey is thesignaling factor, a constant between zero and one. A vglaé& implies
that we fully adjust the order quantity by the mese (decrease) in demand from

period to period.

Cachon and Terwiesh (2006) offer an excellent exgilan for this ordering policy.

An increase in demand could signal that demandshéi®d, suggesting the product’s
actual expected demand is higher than previousiyght. Then the retailer should
increase his order quantity to cover additionaufetdemand, otherwise he will
quickly stock out. In other words, it is rationalrfa retailer to increase his order
guantity when faced with an unusually high demabseovation. These reactions by
the retailer, however, contribute to the bullwhifieet. Suppose the retailer’'s high
demand observation occurred merely due to randaotuition. As a result, future
demand will not be higher than expected even thatinghretailer reacted to this

information by ordering more inventory. Hence, tatiler will need to reduce future

12



orders so that the excess inventory just purcheaede drawn down. Ordering more
than needed now and less than needed later imihleesetailer's orders are more

volatile than the retailer's demand, which is thévehip effect.

Suppose we select “demand signal processing” inspueadsheet (the “Define a
demand forecasting technique” window), then we idistely observe demand
amplification. If we sej = 1, the bullwhip effect increases to a value at8. If we
anticipate to a lesser degree to the change odiehgand, for example by settigg=
0.2, the bullwhip effect tempers to a value arodrdB. Observe that the switching

costs also increase together with the bullwhip mesas

3.3 Moving average forecast

When the retailer does not know the true demandgss) he can use simple methods
to forecast demand, such as the moving averagepanential smoothing technique.
This way future demand forecasts are continuoupljated in face of new demand
realizations. These estimates are then used tongetthe order-up-to level (see Eq.
(8)). Hence, adjusting the demand forecasts everipog, the order-up-to level also

becomesdaptive.

The moving average forecast (MA) takes the average of the observedatel in the

previous periods. The one-period ahead forecagvén by
. Tl
D, =[ ZDHJ/Tm, (11)
i=0

with Tm the number of (historical) periods usedhe forecast. The forecast of the

lead time demand is obtained by multiplying the-peeiod ahead forecast by the lead

time L, I51L = LI:A)t , which determines the OUT level in Eqg. (8).

By selecting the “moving average” forecasting tegbe in our spreadsheet models,
we observe the impact of this forecast method enotider variability. Assuming an

[ID demand and a physical lead time of 2 periolds, lullwhip effect equals 3.63 for

13



Tm = 4 (if one period corresponds to a week, theruge the demand data of the past
4 weeks or 1 month to compute the forecast). Bpgishe data of 1 year or Tm=52,
we obtain a much smaller bullwhip of 1.12 and werapch the chase sales policy.
Indeed, the more data we use from the past, thseiclour forecast will approach the

average demand, and our results coincide with rdearand forecasting.

The spreadsheets also allow us to illustrate tleeebdf the lead times on the bullwhip
effect. Doubling the physical lead time to 4 pesofbr example, the bullwhip
measure increases to 6.63 with Tm = 4. The sanutsd®ld for an AR demand. We
find that there is always bullwhip for all value$ @ and L. Clearly there is one
exception that will result in no bullwhip (BW=1)amely when we sqi = 0 and
Tm=0. In that case the AR(1) demand simplifies to fitedemand and the forecast

equals the average demand, resulting in the cladee jgolicy.

3.4 Exponential smoothing forecast

The exponential smoothing (ES) forecast is an adaptive algorithm in whicl tme-
period-ahead demand forecast is adjusted withaidraof the forecasting error. Let
a denote the smoothing factor, then the ES forechsext period’s demand can be

written as
D, =D, +a[D, -D,,). (12)

Analogously to the moving average forecasting maitlvee multiply the one-period
ahead forecast by the lead time L to obtain a nreasfi the lead time demand

forecast.

We illustrate this forecasting method with our sfoigheets. When demand is IID and
Tp=2, a smoothing factar=0.4 generates a bullwhip measure of 5.20. We gbser
that an increase af increases the bullwhip effect, since more weighgiven to a
single observation in the forecast. Wherapproaches zero (e.g. = 0.001), we
approximate the average demand as forecast. Inchsg the order-up-to level

remains constant over time and hence there is hotbp effect (i.e. a bullwhip value

14



of one). Similar to the MA forecast, we observettha increase in the lead time

results in a higher bullwhip measure.

3.5 Minimum Mean Squared Error forecast

Finally we consider theninimum mean squared error (MSE) forecasting method.
With this forecasting technique, the demand foresaderived in such a way that the
forecast error is minimized. The MSE forecast fag tlemand in period t #-equals

the conditional expectation of.d given current and previous demand observations
Dy, Di1, Dra,... (Box and Jenkins 1976). Doing so, we exploit thdarlying nature of
the demand pattern to predict future demand. Asresseaxquence it seems logic to
explicitly forecast the-period-ahead demand to predict lead time demastead of

simply multiplying the one-period-ahead forecasthwthe lead time (as in the MA
and ES forecasting technique). L@LT,T =1,2,.., be thet-period-ahead forecast of

demand [, made in period t. Then,

D..=D+p(D, -D), (13)
D..=D+p*(D, -D). (14)

The lead time demand forecast is obtained by phgydinet-period-ahead forecast
into the definition of lead time demanﬁ’,tL = Z;f)m . Hence, in contrast to the MA

and ES forecast methods, we do not multiply thememeod ahead forecast with the
lead time, but instead calculate the forecast efddmand over the lead time horizon

L. The MSE forecast for lead time demand is theremgiby

N _ _ L1 _
D" :|_D+"1—"(Dt—D). (15)
-p

Clearly, the MSE forecasting scheme is optimal wtiemand is an AR(1) process, as
it explicitly takes the correlative demand struetumto account, which is not the case
in the non-optimal MA and ES techniques. It assyrhesvever, that the underlying

parameters of the demand process are known omthatfinite number of demand

15



data is available to estimate these parametersatety When demand is 11Dp€0),
the above equations reveal that the MSE forecadtices to mean demand
forecasting. Note however that in the spreadsiuedy, the one-period ahead forecast

is given and not the lead time demand forecast.

We illustrate the impact of this forecasting methwith our spreadsheets, and again
assume Tp = 2. The results obtained are diffenemh fthe previous results. When
demand is negatively correlated, there is no bupivdifect. When for instange = —
0.5, we obtain a bullwhip measure of 0.30, meartimaf the order variability is
dampened compared to the customer demand, instdraing amplified. We refer to
Alwan et al. (2003) for a theoretical justificatioWhenp = 0.5, we obtain a bullwhip
measure of 2.64, so that the bullwhip effect isspr¢ for positively correlated
demand. Note that whgn= 0, the demand process is IID and the MSE fotduaits
down to the mean demand forecast, resulting in Bwbip measure of one.
Furthermore, we again observe that increasing #ael ltime results in a higher

bullwhip measure.

3.6 Insights

We have contrasted five different forecasting mehito replenish inventory with the
standard order-up-to policy for both 1ID and AR@@mand. The findings indicate
that different forecasting methods lead to différdenllwhip measures. The bullwhip

measure also varies according to the lead timedanthnd process.

We conclude that, when we forecast a stationaryameirbased on its long term
average and we keep the OUT level constant, tlser® ibullwhip effect. However,
when we adapt the OUT level using a simple expaakesinoothing, moving average
or demand signal processing method, the standatdr-ap-to policy will always
result in a bullwhip effect, independent of the dewh process. The MSE forecasting
technique is clearly the winner among the forecasthods, because it chases sales
when demand is an 11D process and it dampens ther @ariability when demand is
negatively correlated. Moreover, it minimizes theriance of the forecasting error

among all linear forecasting methods, and thereifoleads to the lowest inventory

16



costs. Nevertheless, this forecast method regaineslaborate study to discover the

parameters of the demand process.

We conclude that improper forecasting may have wastating impact on the
bullwhip effect. As a consequence, inventory anddpction switching costs may
increase significantly. The spreadsheet applicati@ips the decision maker to
evaluate the impact of forecasting on the varigbibf the material flow. This

observation puts forecasting in a totally differpatspective.

4 Impact of bullwhip reduction on customer service

In the previous section we illustrated that thelvoloip effect may arise when using
the standard order-up-to policy. In this sectionimteoduce a generalized order-up-to
policy that avoids variance amplification and swxt®in generating smooth ordering
patterns, even when demand has to be forecastedotBimg models have a long
tradition. The economic rationale of using smoaghieplenishment (production)
rules is quite obvious. A smoothing policy is jtistl when production (ordering) and
inventory costs are convex (e.g. quadratic costswhben there is a production
switching cost. In such an environment it is prefide not to accept large deviations,

instead some form of “averaging” is optimal.

In this section we introduce a generalized ordeteugeplenishment rule. We discuss
the trade-off between bullwhip and customer seryitesent some win-win solutions
that arise for some specific demand patterns ascuds the use of the generalized

OUT policy when demand is forecasted using the E8A forecast technique.

4.1 Generalized order-up-to policy

We present a generalized order-up-to policy withitliention of dampening the order
variability or smoothing the order pattern. Consider the standard orddoymlicy.
Substituting Eq. (8) into Eq. (1) we obtain
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O=D- +SS—IP=LD, +SS—1Ip

=(T, +1)D, +SS—IP =D, +[T,D, + SS- IR, (16)

where Tplf)t + SS can be seen as thesired inventory position DIP, which is the sum

of the desired pipeline stock and desired net stock fetysatock. The difference
between the desired and actual inventory position [DIFP}-is denoted as the

inventory deficit.

Introducing a proportional controllep for the inventory deficit, results in the
following generalized order-up-to policy:

O =D, +B - [DIP —IR], (17)

with 0 <P < 2. Forrester (1961) refers t3Hs the “adjustment time”. Wheghn< 1 he
explicitly acknowledges that the deficit recovery shobkl spread out over time,
whereas} > 1 implies an overreaction to the inventory deficitnele wherf < 1, the
inventory deficit is only partially recovered during the nexrtlering period. This
fractional adjustment is second nature to control enginéeisthe reason why the

decision rule given by Eq. (17) may generate a “smoattiéring pattern.

We developed a spreadsheet simulation of this generdlimettory policy. The
model is similar to the spreadsheet simulation of the stdr@daT policy, but with a
few important modifications. Additionally we input a valder the smoothing
parameter (since the control engineer literature prefers to useirtherse off,
namely Ti = 1, we also mention the Ti parameter in the input sectionfrigure 2
we illustrate the impact on the order pattern when wesha valug = 0.5, demand
is IID and forecasted with its long term average. Thetfonal controller indeed has a
dampened or “peak-shaving” impact on the order pattdma resulting bullwhip

measure equals 0.33.

2 This model can be found in a second workshedtmtame file.
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Figure 2: Generated order pattern when p = 0.5

4.2 Trade-off between bullwhip and inventory variance

So far we have been concentrating on the variancedef®oplaced. This is, however,
only one side of the coin. In developing a replenishmelet one has to consider the
impact on the inventory variance as well, because taaiance will have an
immediate effect on customer service: the higher the variimeenore stock that will
be needed to maintain customer service at the targdt \&eetherefore measure the
net stock amplification (NSAmp), which equals the ratich® inventory variance
over the demand variance. Net stock variance (let alariance amplification) is not
a common supply chain measure, but we need it to cadctilatfill rate, which is a

popular customer service measure (see Disney et al).2006

Hence, we take into consideration the two following fact@n the one hand, the
bullwhip effect which is related to the order variabilitydathe switching costs, and
on the other hand the the net stock amplification whictelsted to investment in

inventories and the customer service.
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Intuitively, we expect smooth ordering patterns will result higher inventory
fluctuations and consequently in a poorer fill rate, amlishindeed the case. Suppose
we assume an |ID demand, mean demand forecastingTpnd. A chase sales
strategy withB=1 results in an NSAmp value of 3. Smoothing Witi0.5 reduces the
bullwhip measure to 0.33, and equivalently decreaseclsing costs. On the other
hand, it increases the NSamp measure to 3.33, togetheanvititrease in inventory
costs. We are able to smooth the order pattern, buthgagrice of higher inventory

fluctuations and more inventory costs.

These observations lead to a trade-off between bullwhipcastbmer service (as
measured by net stock variance amplification). The quessioto what extent
production rates can be smoothed in order to minimizdyateon adaptation costs,
without adversely increasing our inventory costs toohmi@isney and Towill 2003).
Disney et al. (2004) show that when demand is IID ardarecast demand with its
mean, then the sum of bullwhip and NSAmp is minimizefl at0.618, which can be
seen as “the best of both worlds” solution. This rdwalale result is the “Golden
Section”, also known as the Golden Mean, Golden RatiBivine Proportion. By
adding up the bullwhip effect metric and the net stoclpldivation metric, we
assume that both factors are equally important. It is dlear in the real world
companies apply weights to the bullwhip related costs astbmer service related
costs. In this case the shape of the total cost cumyelra different and the optimal

smoothing parameter may no longer be “golden”.

4.3 Win-win solutions for some demand patterns

We demonstrated that bullwhip can be reduced by ordarinaction of the inventory
deficit, rather than recovering the entire deficit medime period. When demand is
[ID, order smoothing comes at a price: in order torgnigee the same fill rate, more
investment in safety stock is required due to an incremseatory variance. Disney
et al. (2006) show that it is possible to actually achiewkwhip and inventory
reduction together whilst maintaining customer servichisTis a true win-win
situation resulting from the generalized OUT policy. Howewis cannot be

achieved in all cases as it depends on the demarsrpatt
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Consider a stochastic demand pattern with auto regressidemoving average
(ARMA) components of order one, i.e. ARMA (1,1) fided by:

D, :5+p(Dt—1_5)+81 _(1_6)8t—1’ (18)

which is similar to the AR process, given by Eq. (2)t additionally contains a
moving average component wishthe moving average coefficient,<06 < 2 (Box
and Jenkins 1976). Then, depending on the specific ¥adfi¢ andd, inventory
variance can be reduced by smoothing the demandl $fyral), so that bullwhip can
be removed whilst reducing net stock variance (when eoeapto the standard OUT
policy). In other cases, however, lower inventory \@liy is achieved by over-
reacting to the ARMA signal (i.ef, > 1). If we then want to remove bullwhip in this

situation, we are obliged to hold extra inventory.

These situations can be illustrated with the spreadshHeatsnstance, suppose that
p=0.5, 6=1.8 and we forecast demand with its long term avefagean demand
forecasting”). Then, a chase sales strat@gyl) results in an NSAmp measure of
6.73. A value off = 1.8 increases the bullwhip measure to 1.33, but deesethe
NSAmp to 5.5 (observe that smoothing wiith= 0.5 decreases the bullwhip to 0.66,
but increases NSAmp to 9.13). Hence, in this case lomemtory variability is
achieved with bullwhip. When we consider another examphere demand is
characterized by=0.25 ands=0.25, then a chase sales stratefgyyl] results in an
NSAmp of 1.46. Smoothing witf = 0.5 decreases the inventory variability to 1.15.
Inventory variance is in this case reduced by smoothieglemand signal, which is a
win-win solution. We refer to Disney et al. (2006) fodetailed analysis of potential

win-win scenarios.

4.4 The generalized order-up-to policy with demand forecasting

We have to be cautious with the results described abble. smoothing rule
described by Eqg. (17) indeed provides the opportunitgaimpen the variability in
orders compared to the demand pattern. When an IICadens forecasted with its

long term average, Disney et al. (2006) show that thievibipp measure is equal to
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B/(2-). Hence, for 0 § < 1 we generate a smooth replenishment pattern (dangpenin
order variability) and for 1 §§ < 2 we create bullwhip (variance amplification).
However, when the smoothing rule is applied and demafarécasted with e.g. the
moving average or exponential smoothing technique, réiselts are much more
complicated. For instance, when demand is IID and fstedawith exponential
smoothing and a smoothing parameter= 0.5, then a valu§ = 0.5 results in a
bullwhip measure equal to 2.41. Hence the bullwhip effegresent, although the
feedback paramet@ris smaller than one. We should rediogown to 0.2 in order to
obtain a smooth order pattern with a bullwhip measuorallsr than one when using
this particular forecast method. In other words, imprayser of forecasting techniques

may destroy the smoothing effect of the generalized arpeo policy.

The analytic formulas for bullwhip and NSAmp for thengealized OUT policy in the
complete ARMA plane are very lengthy when we foreeessng the ES technique.
We refer to Disney et al. (2006) where these expvassare provided. For the
purpose of this paper, we just mention that a feedbac&npeterp < 1 does not
necessarily imply that the order variability is dampened wdemand is forecasted
with the MA or ES method. The decision maker can congeveral experiments with

our spreadsheet model in order to obtain insights igoctimplicated issue.

45 Insights

When production is inflexible and significant costs areuired by frequently
switching production levels up and down, standard ougete policies with
forecasting mechanisms may no longer be desirable. Beadithe huge expenses, it
may be important to avoid variance amplification or evemettuce variability of
customer demand. Therefore we introduced the genatadizier-up-to decision rule
that avoids variance amplification and succeeds in gengramooth ordering
patterns, even when demand has to be forecastedcriibml difference with the
standard order-up-to policies is that the inventory daBainly fractionally taken into
account. In developing this generalized replenishmeet mé have emphasized on
two aspects: the order variability (as measured by the hiplleffect), and the impact
on the variance of the net stock (as measured by thdawot amplification). These

performance measures are related to production swifend inventory costs.
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The insights are clearest when we forecast demand wikbnigsterm average. When
demand is an IID process, bullwhip reduction comespatca. In order to guarantee
the same fill rate, a larger safety stock is requitée “best of both worlds” solution,
minimizing the sum of bullwhip and net stock amplificatiés to sef3 = 0.618, the
“Golden Ratio”. For ARMA(1,1) demand patterns, it is §ibke to end up in four
different scenarios when compared to the standard OUTypdli) win-win, we can
remove bullwhip and reduce inventory; (#n-lose, sometimes bullwhip can only be
removed at the expense of holding extra inventoryld&win, sometimes bullwhip
can be endured because it results in a policy that esgl@iss inventory to be held; (4)
lose-lose, sometimes excessive bullwhip and inventory may eXisese scenarios

depend on the statistical properties of the demand process

When demand is forecasted using the exponential smoodringoving average
method, the results are much more complex. In that eafe®dback parametpr< 1

does not necessarily imply that the order variability is plamed compared to the
demand pattern. Using the spreadsheet application ti@atemaker can experiment
with order smoothing and forecasting and as such, hefshevaluate the impact of
different replenishment strategies on the fluctuations th bwe order and inventory

pattern.

5 Conclusions

In this paper we present a spreadsheet application thabeaised for educational
purposes to gain a clear insight into the use or abuses@ntiory control policies in

relation to the bullwhip effect and customer service. dXpleres a series of
replenishment policies and forecasting techniques untferetht demand processes,
and illustrates how tuning the parameters of the replewsh policy and the

forecasting technique result in the bullwhip effect. Moerowe demonstrate how
bullwhip can be reduced, with an increase in inventdugtéiations and reduced
customer service as a result. The spreadsheet modasdenged in this paper will
guide the decision maker through a fairly complicated mphegr between order
fluctuations, inventory fluctuations and customer service imagety of demand

process scenarios and forecasting techniques.
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Table 1: Exact formulas for the standard order-up-t@ypol

Table 2: Exact formulas for the generalized order-upely.
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Table 1: Exact formulasfor the standard order-up-to policy. Sources: (1) Degjonckheere et al. 2003, (2) Chen et al. 2000, (3) Hosoda 2005, (4) Zhang 2004

11D AR(1)
Bullwhip NSAmp Bullwhip NSAmp
Mean - T _
demand 1 1+Tp® 1 1+Tp+ 2p(Tp-Tpp + ,3(,0 1) 3
forecasting (p-1)
L*(Tm- p*) = 2(p - p™) +
Moving 1425, 2L a LL+Tm) @ 14| 2t 2L 1-p™ @ LTm(Tm(l- p*) - 2(p - p")(1- p™)) +
Average Tm Tm? Tm Tm Tn? 2Tm* (p"" - p) @
Tm?(p-1)?
La(p-)*(ap-p-1)+L(a-2)1-p)
Exponential | 1, o 54 259" ‘a? a2 | Lla-2)-L%a g 1+ (ZLa N 2%a* J[ 1-p J @2.4) (- p* +ap2p" +p-1))+
Smoothing -a a-2 2 a \1-@-a)p 2(a ~2)plap - p+1(p" -1 o
(@-2)(p-1)*(ap-p+])
Demand
signal 1+2y @+ )@ 1+Tp4 / /
processing
— b _ ALt —_ A2 _ AL L+1 _
MMSE 1 1+Tp 1+ 2pA-p )A=P"7) @a LA-p)+pA-p )P P=2) 3

d-p0)

@- p)?
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Table 2: Exact formulasfor the generalized order-up-to policy. Source: Disney et al. 2006

1D
Bullwhip NSAmp
Mean 2
demand B 1+Tp+M
2-p 2-BB

forecasting

Exponential

-2B% +af(-6+ (3—-4Tp)B) -
a’(2+B(-3+ B +2Tp(2+(-1+Tp)B)))

_2+Tp@+a(B-1)-p)2B+a2+(Tp-1)p))

Smoothing (@-2(a(B-)-P)(B-2)
(@-2)(a(B-D-B)(B-2)
AR(D)
Bullwhip NSAmp
_(E1+Tp(6-2)B(-1+(6-D)p)
(B-2)p°
Mean 1-(8-1
demand 5 _,5’,3 1+ Eg _1;:2 2p(Tp =Tpp + p(p™ - 1)
forecasting (p-1?
1+(6-Dp

Exponential
Smoothing

See Disney et al. 2006

See Disney et al. 2006

28






